出版时间:2009-9 出版社:湘潭大学出版社 作者:刘韶跃,彭向阳 编 页数:181
书籍目录
第一章 概率论基础§1.1 概率空间1.1.1 概率的定义与性质1.1.2 条件概率与事件的独立性§1.2 随机变量及其分布1.2.1 一维随机变量的分布1.2.2 多维随机变量及其分布§1.3 随机变量的函数及其分布1.3.1 一维随机变量的函数及其分布1.3.2 二维随机变量的函数及其分布1.3.3 二维随机变量的变换及其分布§1.4 随机变量的数字特征1.4.1 数学期望1.4.2 方差1.4.3 矩,协方差与相关系数1.4.4 多维随机变量的数字特征1.4.5 条件数学期望§1.5 大数定律与中心极限定理1.5.1 大数定律1.5.2 中心极限定理§1.6 多元正态分布习题一第二章 数理统计的基本概念与抽样分布§2.1 数理统计的基本概念2.1.1 总体与样本2.1.2 统计量2.1.3 经验分布函数§2.2 数理统计中的某些常用分布2.2.1 r分布与X2分布2.2.2 β分布族2.2.3 t分布2.2.4 F分布§2.3 抽样分布2.3.1 正态总体的抽样分布2.3.2 非正态总体的一些抽样分布§2.4 充分统计量与完备统计量2.4.1 充分统计量2.4.2 因子分解定理2.4.3 完备统计量2.4.4 指数型分布族§2.5 顺序统计量与样本极差2.5.1 顺序统计量及其分布2.5.2 样本中位数和样本极差习题二第三章 参数估计§3.1 参数的点估计3.1.1 衡量估计量好坏的标准3.1.2 求点估计的两种常用方法§3.2 最小方差无偏估计§3.3 贝叶斯估计3.3.1 统计决策理论3.3.2 贝叶斯公式的密度函数形式3.3.3 贝叶斯估计3.3.4 minimax估计§3.4 参数的区间估计3.4.1 基本概念3.4.2 单个正态总体参数的区间估计3.4.3 两个正态总体均值差与方差比的区间估计3.4.4 非正态总体参数的区间估计习题三第四章 假设检验§f.1 假设检验的基本概念4.1.1 假设检验的基本思想和基本步骤4.I.2 两类错误和检验的功效函数§4.2 正态总体参数的假设检验14.2.1 单个正态总体参数的假设检验4.2.2 两个正态总体参数的假设检验§4.3 其他分布参数的假设检验4.3.1 指数分布参数的假设检验4.3.2 比例p的检验4.3.3 大样本检验4.3.4 检验的p值§4.4 非参数假设检验方法4.4.1 多项分布的检验法4.4.2 一般分布的X检验法习题四第五章 回归分析§5.1 一元线性回归5.1.1 一元线性回归模型的参数估计5.1.2 一元线性回归模型回归系数的假设检验5.1.3 一元线性回归模型预测§5.2 多元线性回归5.2.1 多元线性回归模型5.2.2 多元线性模型的参数估计5.2.3 多元线性模型的假设检验5.2.4 多元线性模型的预测§5.3 非线性回归模型简介习题五第六章 方差分析与试验设计§6.1 单因素方差分析6.1.1 单因素方差分析的数据结构6.1.2 数学模型6.1.3 方差分析6.1.4 参数估计6.1.5 方差分析中的多重比较§6.2 双因素方差分析6.2.1 无交互作用的双因素方差分析6.2.2 有交互作用的双因素方差分析§6.3 正交试验设计初步6.3.1 正交表6.3.2 正交表的分析习题六第七章 多元统计分析§7.1 多元正态分布的参数估计和假设检验7.1.1 多元正态分布的参数估计7.1.2 多元统计中常用的分布及抽样分布定理7.1.3 多元正态分布均值向量的假设检验§7.2 判别分析7.2.1 马氏距离的概念7.2.2 距离判别7.2.3 判别准则的评价§7.3 列联表分析7.3.1 离散型数据的概率分布与抽样模型7.3.2 变量间相关联系的测度7.3.3 独立性假设检验习题七第八章 随机模拟§8.1 伪随机数的生成§8.2 一般离散随机变量的生成8.2.1 逆变换法8.2.2 拒绝一接受方法§8.3 连续随机变量的生成8.3.1 逆变换法8.3.2 接受拒绝方法§8.4 MCMC方法8.4.1 马氏链简介8.4.2 Hastings—Metrop01is算法附录参考文献
编辑推荐
数理统计作为现代数学的重要分支,在自然科学和社会科学的各个领域都具有非常广泛的应用。 由彭向阳等编著的《数理统计》共分八章,前六章介绍了数理统计的基本理论和基本方法,主要内容有:数理统计的基本概念、抽样分布、参数估计、假设检验、回归分析、方差分析和试验设计。并在后二章中介绍了多元统计分析初步以及随机模拟方法等内容。
图书封面
评论、评分、阅读与下载