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Strings Processing Strings Line by Line Collections of Filehandles IO::Handle and Friends 10::File |O::Scalar
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with Indices Sorting Efficiently The Schwartzian Transform Multilevel Sort with the Schwartzian Transform
Recursively Defined Data Building Recursively Defined Data Displaying Recursively Defined Data Avoiding
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0000 OO0 Sorting Efficiently As the Professor tries to maintain the community computing facility (built
entirely outof bamboo, coconuts, and pineapples, and powered by a certified Perl-hacking monkey), he continues
to discover that people are leaving entirely too much data on thesingle monkey-powered filesystem, so he decides
to print a list of offenders. The Professor has written a subroutine called ask_monkey_about, which, given a
cast-away's name, returns the number of pineapples of storage they use. We have to ask the monkey because he's in
charge of the pineapples. An initial naive approach to find the offenders from greatest to least might be something
like:In theory, this would be fine. For the first pair of names (Gilligan and Skipper), we askthe monkey "How many
pineapples does Gilligan have?" and "How many pineapplesdoes Skipper have?" We get back two values from the
monkey and use them to order Gilligan and Skipper in the final list. However, at some point, we have to compare
the number of pineapples that Gilliganhas with another castaway as well. For example, suppose the pair is Ginger
and Gilligan. We ask the monkey about Ginger, get a number back, and then ask the monkey about Gilligan...
again. This will probably annoy the monkey a bit, since we already asked. But we need to ask for each value two,
three, or maybe even four times just to put theseven values into order. This can be a problem because it irritates the
monkey. How do we keep the number of monkey requests to a minimum? Well, we can build atable first. We use a
map with seven inputs and seven outputs, turning each castaway item into a separate array reference, with each
referenced array consisting of the cast-away name and the pineapple count reported by the monkey.
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