00004, tushu007.com
<<Perl] [0 >>

gobooo

00 0 <<Perld 0 >>

1300 ISBNUO O 0 9787564138882
1000 ISBNO O 11 7564138882
0udodon2013-1
gooooboooogooao

gobobobbboooogogopbrO00O0O0nobbObOO0oooonbDODn

00000000 http://www.tushu007.com

Page 1



00004, tushu007.com
<<Perl] [0 >>

goon

OPerl OO0y C20)ooooooooooobobobobobobobooooooooo
O00000000DbO0bOobOonooboooooUOPeriDODOCPANODDODODODPeriOO
OO000000b0bOobOoboboooooeuoooobobobooreriooog

Page 2



00004, tushu007.com
<<Perl] [0 >>

goon

O0000000D0O0ORandalL.SchbwartzD DO O OO OOBriandFoyd OO0 D OOODOOO Tom
PboenixJD RandalL.SchwarzO OO0 00000000 0O0O0OODO0ODOOOOO
O0000000000000000PerOOD0DO0O0OPerO00OOD0PerilDDO0OOOOOPerld
O0000OORellyD O OO

briandfoy0 OO OO0OPeriD 0000000 ODODOThePerlReviewd D OO OO0O0OOOODODOPerl
O

OO0O0OPerlO0O0OODO OPerld 00 0OO0O0OPerid OO O EffectivePerl Programmingd O Addison
—WesleyD OO OO O0OOO

Tom Phoenix[d StonehengeConsulting Servicest [0 00 O Perld O O

0 0O 0O 0O O Usenet comp.lang.perl.miscd complang.pefl.moderatedd O O O O 0O 0O O
O00OpPerilOO0D0OOO0DOOOOOPeriOOOoOd

Page 3



0000 0O, tushu007.com
<<Perll] [0 >>

good

Foreword Preface 1. introduction What Should You Know Already? strict and warnings Perl v5.14 A Note on
Versions What About All Those Footnotes? What's With the Exercises? How to Get Help What If I'm a Perl
Course Instructor? Exercises 2. Using Modules The Standard Distribution Exploring CPAN Using Modules
Functional Interfaces Selecting What to Import Object-Oriented Interfaces A More Typical Object-Oriented
Module: Math::Biglnt Fancier Output with Modules What's in Core? The Comprehensive Perl Archive Network
Installing Modules from CPAN CPANmMinus Installing Modules Manually Setting the Path at the Right Time
Setting the Path Outside the Program Extending @INC with PERLSLIB Extending @INC on the Command Line
local::lib Exercises 3. Intermediate Foundations. List Operators List Filtering with grep Transforming Lists with map
Trapping Errors with eval Dynamic Code with eval The do Block Exercises 4, Introduction toReferences Doing the
Same Task on Many Arrays PEGS: Perl Graphical Structures Taking a Reference to an Array Dereferencing the
Array Reference Getting Our Braces Off Modifying the Array Nested Data Structures Simplifying Nested Element
References with Arrows References to Hashes Checking Reference Types Exercises 5. References and Scoping
More than One Reference to Data What If That Was the Name? Reference Counting and Nested Data Structures
When Reference Counting Goes Bad Creating an Anonymous Array Directly Creating an Anonymous Hash
Autovivification Autovivification and Hashes Exercises Manipulating Complex Data Structures Using the
Debugger to View Complex Data Viewing Complex Data with Data::Dumper Other Dumpers Marshalling Data
Storing Complex Data with Storable YAML JSON Using the map and grep Operators Applying a Bit of Indirection
Selecting and Altering Complex Data Exercises Subroutine References Referencing a Named Subroutine
Anonymous Subroutines Callbacks Closures Returning a Subroutine from a Subroutine Closure Variables as
Inputs Closure Variables as Static Local Variables state Variables Finding Out Who We Are Enchanting
Subroutines Dumping Closures Exercise 8. Filehandle References The Old Way The Improved Way Filehandles to
Strings Processing Strings Line by Line Collections of Filehandles IO::Handle and Friends 10::File |O::Scalar
10::Tee 10::Pipe 10::Null and 10::Interactive Directory Handles Directory Handle References Exercises Regular
Expression References Before Regular Expression References Precompiled Patterns Regular Expression Options
Applying Regex References Regexes as Scalars Build Up Regular Expressions Regex-Creating Modules Using
Common Patterns Assembling Regular Expressions Exercises 10. Practical Reference Tricks Fancier Sorting Sorting
with Indices Sorting Efficiently The Schwartzian Transform Multilevel Sort with the Schwartzian Transform
Recursively Defined Data Building Recursively Defined Data Displaying Recursively Defined Data Avoiding
Recursion The Breadth-First Solution Exercises 11. Building Larger Programs The Cure for the Common Code
Inserting Code with eval Using do Using require The Problem of Namespace Collisions Packages as Namespace
Separators Scope of a Package Directive Packages and Lexicals Package Blocks Exercises 12. Creating Your Own
Perl Distribution Perl’s Two Build Systems Inside Makefile.PL Inside Build.PL Our First Distribution h2xs Module:
:Starter Custom Templates Inside Your Perl Distribution The META File Adding Additional Modules [J [0 13.
Introduction to Objects 14. Introduction to Testing 15. Objects with Data 16. Some Advanced Object Topics 17.
Exporter 18. Object Destruction 19. Introduction to Moose 20. AdvancedTesting 21. Contributing to CPAN
Appendix: Answers to Exercises Index of Modules in this Book Index

Page 4



0000 0O, tushu007.com
<<Perll] [0 >>

good

0000 OO0 Sorting Efficiently As the Professor tries to maintain the community computing facility (built
entirely outof bamboo, coconuts, and pineapples, and powered by a certified Perl-hacking monkey), he continues
to discover that people are leaving entirely too much data on thesingle monkey-powered filesystem, so he decides
to print a list of offenders. The Professor has written a subroutine called ask_monkey_about, which, given a
cast-away's name, returns the number of pineapples of storage they use. We have to ask the monkey because he's in
charge of the pineapples. An initial naive approach to find the offenders from greatest to least might be something
like:In theory, this would be fine. For the first pair of names (Gilligan and Skipper), we askthe monkey "How many
pineapples does Gilligan have?" and "How many pineapplesdoes Skipper have?" We get back two values from the
monkey and use them to order Gilligan and Skipper in the final list. However, at some point, we have to compare
the number of pineapples that Gilliganhas with another castaway as well. For example, suppose the pair is Ginger
and Gilligan. We ask the monkey about Ginger, get a number back, and then ask the monkey about Gilligan...
again. This will probably annoy the monkey a bit, since we already asked. But we need to ask for each value two,
three, or maybe even four times just to put theseven values into order. This can be a problem because it irritates the
monkey. How do we keep the number of monkey requests to a minimum? Well, we can build atable first. We use a
map with seven inputs and seven outputs, turning each castaway item into a separate array reference, with each
referenced array consisting of the cast-away name and the pineapple count reported by the monkey.

Page 5



00004, tushu007.com
<<Perl] [0 >>

goon

OPerl00(000)020)000000Peri0 0000
O0OPr000O000O000O000O000O000O00000PODONDODONODOO0D0O0000

goooo
gobbobobbougoooobboobbuoooouonobobbooogo

Page 6



00004, tushu007.com
<<Perl] [0 >>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 7



