挖掘社交网络

出版时间:2011-5  出版社:东南大学出版社  作者:Matthew A. Russell  页数:332  
Tag标签:无  

内容概要

Facebook、Twitter和Linkedln产生了大量的宝贵的社交数据,但是你怎样才能找出谁通过社交媒介进行联系?他们在讨论些什么?或者他们在哪儿?《挖掘社交网络(影印版)》这本简洁而且具有操作性的书将为你展示如何回答这些甚至更多的问题。你将学到如何组合社交网络数据、分析技术,如何通过可视化帮助你找到你一直在社交世界中寻找的内容,以及那些你都不知道存在的有用信息。
每个独立章节介绍了在社交网络的不同领域挖掘数据的技术,这些领域包括博客和电子邮件。你所需要具备的就是一定的编程经验和学习基本的python工具的意愿。

作者简介

Matthew A.Russell,Digital Reasoning
Systems的工程副总裁和Zaffra的负责人,是热爱数据挖掘、开源和网络应用技术的计算机科学家。他是《Dojo:The
Definitive Guide》(O'Reilly出版)的作者。

书籍目录

Preface
1. Introduction: Hacking on Twitter Data
Installing Python Development Tools
Collecting and Manipulating Twitter Data
Tinkering with Twitter's API
Frequency Analysis and Lexical Diversity
Visualizing Tweet Graphs
Synthesis: Visualizing Retweets with Protovis
Closing Remarks
2. Microformats: Semantic Markup and Common Sense Collide
XFN and Friends
Exploring Social Connections with XFN
A Breadth-First Crawl of XFN Data
Geocoordinates: A Common Thread for Just About Anything
Wikipedia Articles + Google Maps = Road Trip?
Slicing and Dicing Recipes (for the Health of It)
Collecting Restaurant Reviews
Summary
3. Mailboxes: Oldies but Goodies
mbox: The Quick and Dirty on Unix Mailboxes
mbox + CouchDB = Relaxed Email Analysis
Bulk Loading Documents into CouchDB
Sensible Sorting
Map/Reduce-Inspired Frequency Analysis
Sorting Documents by Value
cotichdb-lucene: Full-Text Indexing and More
Threading Together Conversations
Look Who's Talking
Visualizing Mail "Events" with SIMILE Timeline
Analyzing Your Own Mail Data
The Graph Your (Gmail) Inbox Chrome Extension
Closing Remarks
4. Twitter: Friends, Followers, and Setwise Operations
RESTful and OAuth-Cladded APIs
No, You Can't Have My Password
A Lean, Mean Data-Collecting Machine
A Very Brief Refactor Interlude
Redis: A Data Structures Server
Elementary Set Operations
Souping Up the Machine with Basic Friend/Follower Metrics
Calculating Similarity by Computing Common Friends and Followers
Measuring Influence
Constructing Friendship Graphs
Clique Detection and Analysis
The Infochimps "Strong Links" API
Interactive 3D.Graph Visualization
Summary
5. Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet
Pen : Sword :: Tweet : Machine Gun (?!?)
Analyzing Tweets (One Entity at a Time)
Tapping (Tim's) Tweets
Who Does Tim Retweet Most Often?
What's Tim's Influence?
How Many of Tim's Tweets Contain Hashtags?
Juxtaposing Latent Social Networks (or #JustinBieber Versus
#TeaParty)
What Entities Co-Occur Most Often with #JustinBieber and
#TeaParty
Tweets?
On Average, Do #JustinBieber or #TeaParty Tweets Have More
Hashtags?
Which Gets Retweeted More Often: #JustinBieber or #TeaParty?
How Much Overlap Exists Between the Entities of #TeaParty and
#JustinBieber Tweets?
Visualizing Tons of Tweets
Visualizing Tweets with Tricked-Out Tag Clouds
Visualizing Community Structures in Twitter Search Results
Closing Remarks
6. Linkedln: Clustering Your Professional Network for Fun (and
Profit?)
Motivation for Clustering
Clustering Contacts by Job Title
Standardizing and Counting Job Titles
Common Similarity Metrics for Clustering
A Greedy Approach to Clustering
Hierarchical and k-Means Clustering
Fetching Extended Profile Information
Geographically Clustering Your Network
Mapping Your Professional Network with Google Earth
Mapping Your Professional Network with Dorling Cartograms
Closing Remarks
7. Google Buzz: TF-IDF, Cosine Similarity, and Collocations
Buzz = Twitter + Blogs (???)
Data Hacking with NLTK
Text Mining Fundamentals
A Whiz-Bang Introduction tO TF-IDF
Querying Buzz Data with TF-IDF
Finding Similar Documents
The Theory Behind Vector Space Models and Cosine Similarity
Clustering Posts with Cosine Similarity
Visualizing Similarity with Graph Visualizations
Buzzing on Bigrams
How the Collocation Sausage Is Made: Contingency Tables and
Scoring
Functions
Tapping into Your Gmail
Accessing Gmail with OAuth
Fetching and Parsing Email Messages
Before You Go Off and Try to Build a Search Engine...
Closing Remarks
8. Blogs et al.: Natural Language Processing (and Beyond)
NLP: A Pareto-Like Introduction
Syntax and Semantics
A Brief Thought Exercise
A Typical NLP Pipeline with NLTK
Sentence Detection in Blogs with NLTK
Summarizing Documents
Analysis of Luhn's Summarization Algorithm
Entity-Centric Analysis: A Deeper Understanding of the Data
Quality of Analytics
Closing Remarks
9. Facebook:TheAll-in-OneWonder
Tapping into Your Social Network Data
From Zero to Access Token in Under 10 Minutes
Facebook's Query APIs
Visualizing Facebook Data
Visualizing Your Entire Social Network
Visualizing Mutual Friendships Within Groups
Where Have My Friends All Gone? (A Data-Driven Game)
Visualizing Wall Data As a (Rotating) Tag Cloud
Closing Remarks
10. The Semantic Web: A Cocktail Discussion
An Evolutionary Revolution?
Man Cannot Live on Facts Alone
Open-World Versus Closed-World Assumptions
Inferencing About an Open World with FuXi
Hope
Index

图书封面

图书标签Tags

评论、评分、阅读与下载


    挖掘社交网络 PDF格式下载


用户评论 (总计8条)

 
 

  •   书的内容不错,但是需要有一定数据挖掘或者机器学习的基础,不然挺吃力的,最好对python不陌生,如果是完全不明白可能需要花功夫了,另外在跑实验例子的时候由于twitter的api地址改了,需要google一下
  •   不经过翻译的书,经典
  •   希望可以用作实践指导!
  •   好书,强烈推荐!!
  •   这本书对数据挖掘尤其是图的挖掘很有用
  •   有点偏技术,不过也能看到一些Ideas
  •   书的质量,电商两方面都不错。
  •   发现其实没有那么多的价值。并且这本书好贵好贵。。。。
    记得一个老师说过,如果一本书里有太多的源码的话,这本书就没有多少价值,这本书有好多源码。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7