出版时间:2010-7 出版社:姜群 华中科技大学出版社 (2010-07出版) 作者:姜群 页数:94
Tag标签:无
前言
This book covers broad spectrum important subjects ranging from generalinterests of EAs (such as algor!thm parameter control and constraint handling) tothe hottest topics in EAs-estimation of distribution algorithms (EDAs) withfocusing on design and applications of EDAS.The book is comprised of total of 6 chapters. In Chapter 1, we discuss how toset the values of various parameters of an evolutionary algorithm, beginning withthe issue of whether these values are best set in advance or are best changed duringevolution. Then, we provide a classification of different approaches based on anumber of complementary features, and pay special attention to setting parameterson-the-fly. Then, we consider the issue of constraint handling using evolutionaryalgorithms in Chapter 2. Based on the classification of constrained problems, wediscuss what constraint handling means from an EA perspective, and study the most commonly applied EA techniques to treat constraints. However, Chapter 3 focuses on the parallelization of EDAs. More specifically, it gives guidelines for designing efficient parallel EDAs that employ parallel fitness evaluation and parallel model building. Furthermore, techniques of implementati6ns of new type of EDAs are studied in Chapter 4. Finally, Chapter 5 and Chapter 6 bring together some of EDAs approaches to optimization problems in the fields of medical science and resource management.
内容概要
《进化算法的设计与应用研究》涵盖了一系列重要的主题,范围从进化算法普遍涉及的问题(如算法参数控制与约束处理)到进化算法的研究热点——分布估计算法,并且重点突出分布估计算法的设计与应用。全书共有6章。第1章讨论如何设置进化算法各种参数的值,以这些参数值是否最好事先设置或在进化过程中如何改变等议题开始,给出了许多基于互补特征的不同方法的分类。第2章讨论使用进化算法时的约束处理。基于约束问题的分类,讨论从进化算法角度理解约束处理的含义,并研究了最常用的约束处理的进化技术.第3章集中于设计并行分布估计算法,更详细地给出了利用并行适应度评价和并行建模设计有效分布估计算法的具体指导。此外,第4章研究设计一类新的分布估计算法。最后,第5章和第6章汇合了分布估计算法解决医学和资源管理领域的优化问题的研究。《进化算法的设计与应用研究》对进化算法领域的研究人员来说非常有用,也可供计算机专业的博士、硕士研究生使用。
书籍目录
1 在进化算法中如何设置参数的值1.1 引言1.2 如何改变参数1.2.1 改变变异规模1.2.2 改变惩罚系数1.2.3 总结1.3 进化算法参数控制技术分类1.3.1 改变算法的成分或参数1.3.2 改变参数值的方法1.3.3 决定改变参数值的依据1.3.4 改变的范围1.3.5 总结1.4 改变进化算法参数的案例1.4.1 表达式1.4.2 适应度函数1.4.3 变异1.4.4 交叉1.4.5 选择1.4.6 种群1.4.7 同时改变几个参数1.5 讨论2 进化算法中的约束处理2.1 引言2.2 约束问题2.2.1 无约束的优化问题2.2.2 约束满足问题2.2.3 受约束的优化问题2.3 约束处理的种类2.4 约束处理的途径2.4.1 惩罚函数2.4.2 纠正函数2.4.3 限制搜寻在可行域内2.4.4 解码器函数2.5 应用实例2.5.1 间接解决方法2.5.2 直接解决方法3 设计并行分布估计算法指导3.1 引言3.2 并行分布估计算法的方法3.2.1 分布式适应度评价3.2.2 构建分布式模型3.3 混合贝叶斯优化算法3.4 复杂性分析3.4.1 选择算子的复杂性3.4.2 构造模型的复杂性3.4.3 模型取样的复杂性3.4.4 替换算子的复杂性3.4.5 适应度评价的复杂性3.5 可扩展性分析3.5.1 处理器数为固定时的可扩展性3.5.2 处理器数增加时可扩展性如何变化4 基于最大熵原理设计一类新的分布估计算法4.1 引言4.2 熵、模式4.2.1 熵4.2.2 在子集条件约束下的最大熵4.2.3 模式4.2.4 最大熵分布和模式约束4.3 算法的基本思路4.4 分布估计和取样4.5 新算法4.5.1 一阶模式算法4.5.2 二阶模式算法4.6 实验结果4.7 结论5 基于种群递增学习算法的癌症化疗优化技术5.1 引言5.2 癌症化学疗法的优化问题5.2.1 化学疗法的医学处理5.2.2 癌症化疗模型5.3 GA和PBIL解决方案5.3.1 问题的编码5.3.2 遗传算法5.3.3 基于种群递增学习算法5.4 实验结果5.4.1 算法有效性比较5.4.2 化疗治疗效果比较5.5 结论6 应用分布估计算法和遗传算法优化动态价格问题6.1 引言6.2 通过动态价格途径提高资源管理6.3 动态价格模型6.4 动态价格的进化算法解决方案6.4.1 进化算法解的表达式6.4.2 进化算法6.5 实验及结果6.5.1 算法参数化6.5.2 结果6.5.3 结果分析6.6 结论
章节摘录
插图:optimization objectives.After the transformation,they effectively practicallydisappear, and all we need to care about is optimizing the resulting objectivefunction. This type of constraint handling is done before the EA run.(2)As an alternative to this option we distinguish direct constraint handling,meaning that the problem offered to the EA to solve has constraints (is a COP) thatare enforced explicitly during the EA run.It should be clear from the previous discussion that these options are notexclusive: for a given constrained problem (CSP or COP) some constraints mightbe treated directly and some others indirectly.It is also important to note that even when all constraints are treatedindirectly, so that we apply an EA for an FOP, this does not mean that the EA isnecessarily ignoring the constraints. In theory one could fully rely on the generaloptimization power of EAs and try to solve the given FOP without taking note ofhow f is obtained. However, it is also possible that one does take the specificorigin of f into account, i.e. the fact that is constructed from constraints. In thiscase one can try to make use of specific constraint-based information within the EAby, for instance, special mutation or crossover operators that explicitly aim atsatisfying constraints by using some heuristics.Finally, let us reiterate that indirect constraint handling is always part of thepreparation of the problem before offering it to an EA to solve. However, directconstraint handling is an issue within the EA constituting methods that enforcesatisfaction of the constraints.
编辑推荐
《进化算法的设计与应用研究》由华中科技大学出版社出版。
图书封面
图书标签Tags
无
评论、评分、阅读与下载