Morita系统环上的可加映射

出版时间:2012-12  出版社:李彦博、 肖占魁 东北大学出版社 (2012-12出版)  

书籍目录

1  Definitions and Examples of Morita Context Rings  1.1  Definitions of Morita context rings  1.2  Classical matrix algebras       1.2.1  Full matrix algebras       1.2.2  Triangular matrix algebras       1.2.3  Block upper triangular matrix algebras       1.2.4  Inflated algebras  1.3  Quasi-hereditary algebras       1.3.1  Basic construction       1.3.2  Dual extension algebras  1.4  Two non-degenerate examples       1.4.1  Morita context rings from smash product       1.4.2  Morita context rings from group algebras  1.5  Examples of operator algebras       1.5.1  Triangular Banach algebras       1.5.2  Nest algebras       1.5.3  von Neumann algebras       1.5.4  Incidence algebras2  Linear Mappings on Morita Context Rings  2.1  Commuting mappings on Morita context rings       2.1.1  Posner Theorem       2.1.2  Commuting mappings and centralizing mappings       2.1.3  Skew commuting and skew centralizing mappings  2.2  Lie derivations on Morita context rings  2.3  Jordan derivations on Morita context rings  2.4  Jordan generalized derivations on triangular algebras  2.5  Lie triple derivations on triangular algebras       2.5.1  Proof of the main Theorem       2.5.2  Another look to Theorem 2.5.1  2.6  Local actions of linear mappings on Morita context rings3  Non-linear Mappings and Higher Mappings  3.1  Characterization of Jordan higher derivations  3.2  Jordan higher derivations off some operator algebras  3.3  Jordan higher derivations on triangular algebras  3.4  When a higher derivation is inner  3.5  Non-linear Lie higher derivations  3.6  Non linear Jordan bijective mappings  3.7  Jordan higher derivable pointsBibliography

编辑推荐

李彦博、肖占魁编写的这本《Morita系统环上的可加映射》的英语提要如下:    Morita context rings were first introduced by Morita in [83], in order to characterize when two rings have equivalent module categories. A fundamental result is that the categories of modules over two rings with identity R and 8 are equivalent if and only if there exists a strict Morita context connecting R and S, where "strict" implies that both Morita maps being surjective. Morita contexts have been used to the study of group actions on rings and Galois theory for commutative rings. We refer the reader to [77] for details. Moreover, some aspects of Morita context rings have been studied. For examples, in [92], Sands investigated various radicals of rings occurring in Morita contexts. R. Buchweitz investigated how to compare Hochschild cohomology of algebras related by a Morita context in [20].

图书封面

评论、评分、阅读与下载


    Morita系统环上的可加映射 PDF格式下载


用户评论 (总计0条)

 
 

 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7