出版时间:2013-1 出版社:世界图书出版公司 作者:莫翰 页数:229
内容概要
The present greatly enlarged version was mainly written during
a sabbatical at the university of Uppsala during 2000. The aim of
the book is to present a largely phenomenological introduction to
the field of solid state magnetism at a relatively elementary
level. The two basic concepts of magnetism in solids namely the
localized and the delocalized description are presented as the
extreme approaches. The true nature of magnetism lies, as often in
life, somewhere in between, sometimes showing a tendency towards
the more localized side, sometimes tending to the delocalized side.
It is perhaps this mixing of concepts which makes magnetism appear
complicated and difficult. Another source of confusion is the
different language used by theoreticians and experimentalists. I
have tried very hard to clarify these rather more semantic problems
and to use a uniform nomenclature throughout the book. It is my
belief and my experience that the approach presented here provides
a useful introduction not only for the physicist, but also for the
interested reader coming from fields like chenustry, electrical
engineering or even geo-sciences. The mathematical concepts used
are kept rather simple and hardly ever go beyond an undergraduate
course in mathematics for physicists, chemists or engineering.
Since the book emerged from a lecture course I have given at Vienna
University of Technology for the last 15 years, the chapters in the
book are not completely self-contained.The first-time reader is
thus advised to read the chapters in the sequence that they appear
in the book. It is my sincere hope that after having read this book
the reader will agree that for once the Encyclopedia Brittanica is
in error when it states Few subjects in, science are m,ore
difficult to un,derstan,than magn.etism, (Encyclopedia Brittanica,
15th edition 1989).
The present book does not attempt to cover the whole field of
solid state magnetism, but tries to provide an overview by
selecting special topics. The idea is to create an interest in this
fascinating field in which quantum mechanics, thermodynamics and
computer simulations join forces to explain "Magnetism in the Solid
State".
书籍目录
1. A Historical Introduction
2. Consequences ofFermi Statistics
2.1 Quantum Statistics of Fermions
2.2 Free Energy of the Fermi Gas
3. Paramagnetism
4. Energy Bands in the Crystal
5. Experimental Basis of Ferromagnetism
5.1 Nickel Alloys
5.2 Iron Alloys
5.3 Palladium Alloys
5.4 Iron-Nickel Alloys
5.5 Effects of Strong Magnetic Fields
5.6 Effects of High Pressure
5.7 Effects of Finite Temperature
5.8 Susceptibility above Tc
5.8.1 Susceptibility of “Classical Spins”
5.9 Critical. Exponents
5.10 Neutron Diffraction
5.11 Further Experimental Methods
6. Weiss Molecular Field Model
6.1 Rhodes-Wohlfarth Plot
7. Heisenberg Model
7.1 Magnon Operators
7.2 Heisenberg Hamiltonian in Magnon Variables
7.3 Magnon Dispersion Relation
7.3.1 Specific Heat of Magnons
7.3.2 Ordering Temperature
7.4 Approximations for the Heisenberg Model
7.4.1 Ising Model
7.4.2 XY Model
7.4.3 Mean Field Solutions of the Heisenberg Model
8. Itinerant Electrons at O K
8.1 Pauli Susceptibility of the Itinerant Electrons
8.2 Susceptibility of the Interacting Itinerant Electrons
8.3 Non linear Effects
8.4 Effects of IIigh Fields at O K
8.4.1 Non-magnetic Limit
8.4.2 Strong Ferromagnets
8.4.3 Weak Ferromagnets
8.4.4 bcc Iron and hcp Cobalt
8.4.5 Extremely High Fields
8.4.6 Metamagnetism
8.5 Susceptibility of Paramagnetic Alloys
9. Band Gap Theory of Strong Ferromagnetism
9.1 Magnetism of Alloys
10. Magnetism and the Crystal Structure——Covalent Magnetism
10.1 Crystal Structure of Mn,Fe,Co,and Ni
10.2 Covalent Magnetism
10.3 Covalent Polarization
11. Magnetic Impurities in an Electron Gas
11.1 Impurity Potential in the Jellium
11.2 Strong Perturbations in the Jellium
11.3 Layer and Line Defects
11.4 Magnetic Impurities and Oscillations of the
Magnetization
12. Itinerant Electrons at T〉O: A Historical Survey
12.1 Excitations at Low Temperatures
12.1.1 Strongly Ferromagnetic Systems
12.1.2 Weakly Ferromagnetic Systems
12.2 Stoner Theory for a Rectangular Band
12.3 Weak Excitations with ζ〈〈1
13. Hubbard Model
13.1 Beyond Hartree-Fock
14. Landau Theory for the Stoner Model
14.1 General Considerations
14.2 Application to the Stoner Model
15. Coupling Between Itinerant and Localized Moments
16. Origin of the Molecular Field
16.1 Heitler-London Theory for the Exchange Field
16.1.1 Magnetism of a Spin Cluster
16.1.2 Spinwaves for Localized Electrons
17. Exchange and Correlation in Metals
17.1 Free Electron Gas
17.2 Tightly Bound Electrons
18. Spin Fluctuations
18.1 Fluctuations of a Thermodynamical Variable
18.2 Fluctuations of the Magnetic Moment
18.3 Specific Heat of the Spin Fluctuations
18.4 Magneto-Volume Coupling
18.5 Applications of the Spin Fluctuation Model
18.6 Comparing the Spin-Fluctuation and the Stoner-Model
19. Single Particle Excitations Versus Spin Waves
20. Landau-Ginzburg Model for Spin Fluctuations
21. Conclusion and Lookout
A. Appendices
A. Convexity Property of the Free Energy
B. Derivation of the Coefficient a in (3.17)
C. Quenching of the Orbital Momentum
D. Properties of “Classical” Spins
E. Derivation of the Constant c in (8.24)
F. Ornstein-Zernicke Extension
G. Bogoliubov-Peierls-Feynman Inequality
H. The Factor 2 in Equation (7.27)
I. Hund‘s Rules
J. Polynomial Coefficients in (18.12)
K. Conversion Between Magnetic Units
References
Index
媒体关注与评论
Since this book has been so well received by the scientific community that the first printing has been sold within three years, I was asked 'oy the publishers to produce an updated version for a second printing. I am grateful to all colleagues (mainly students) who reported typos, ambiguous or unclear formulations etc. I considered all of them seriously and thus made a number of changes, which I hope will improve the text. ——Peter Mohn
图书封面
评论、评分、阅读与下载