出版时间:2012-6 出版社:世界图书出版公司 作者:帕克 页数:247
Tag标签:无
内容概要
《复函数论导论》是一部介绍单复变函数解析理论本科生教程,内容体系十分严谨但又不失基础性。本书从最基本定义开始,徐徐展开,除了微积分基本知识,没有做任何铺垫,深入讲解复分析的观点,可以说达到了这门学科的制高点。并且将这些主要知识点:如柯西定理,黎曼射影定理、mittag-leffler定理讲述的十分明朗。本书重在强调几何,专门有一章讨论共形射影,相当于讲述复函数理论的简明教程。每章都有大量的精选练习,从简单直接计算到很具有启发性思想的都具有。
读者对象:数学专业的本科生,研究生和相关专业的科研人员。
作者简介
作者:(美国)帕克(Bruce P.Palka)
书籍目录
preface
i the complex number system
1 the algebra and geometry of complex numbers
2 exponentials and logarithms of complex numbers
3 functions of a complex variable
4 exercises for chapter i
ii the rudiments of plane topology
1 basic notation and terminology
2 continuity and limits of functions
3 connected sets
4 compact sets
5 exercises for chapter ii
iii analytic functions
1 complex derivatives
2 the cauchy-riemann equations
3 exponential and trigonometric functions
4 branches of inverse functions
5 differentiability in the real sense
6 exercises for chapter iii
iv complex integration
1 paths in the complex plane
2 integrals along paths
3 rectifiable paths
4 exercises for chapter iv
v cauchy's theorem and its consequences
1 the local cauchy theorem
2 winding numbers and the local cauchy integral formula
3 consequences of the local cauchy integral formula
4 more about logarithm and power functions
5 the global cauchy theorems
6 simply connected domains
7 homotopy and winding numbers
8 exercises for chapter v
vi harmonic functions
1 harmonic functions
2 the mean value property
3 the dirichlet problem for a disk
4 exercises for chapter vi
vii sequences and series of analytic functions
1 sequences of functions
2 infinite series
3 sequences and series of analytic functions
4 normal families
5 exercises for chapter vii
viii isolated singularities of analytic functions
1 zeros of analytic functions
2 isolated singularities
3 the residue theorem and its consequences
4 function theory on the extended plane
5 exercises for chapter viii
ix conformed mapping
1 conformal mappings
2 msbius transformations
3 paemann's mapping theorem
4 the caratheodory-osgood theorem
5 conformal mappings onto polygons
6 exercises for chapter ix
x constructing analytic functions
1 the theorem of mittag-leffier
2 the theorem of weierstrass
3 analytic continuation
4 exercises for chapter x
appendix a background on fields
1 fields
2 order in fields
appendix b winding numbers revisited
1 technical facts about winding numbers
index
章节摘录
版权页: 插图:
编辑推荐
《复函数论导论》可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。
图书封面
图书标签Tags
无
评论、评分、阅读与下载