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[0 O 1.4 The Functor of PointsOne of the intriguing things about schemes is precisely that they have somuch
structure that is not conveyed by their underlying sets, so that thefamiliar operations on sets such as taking direct
products require vigilantscrutiny lest they turn out not to make sense. It is therefore remarkable thatmany of the
set-theoretic ideas can be restored through a simple device,the functor of points. This point of view, while initially
adding a layer ofcomplication to the subject, is often extremely illuminating; as a result itand its attendant
terminology have become pervasive. We will give a briefintroduction to the necessary definitions here and use
them occasionally inthe following chapters before returning to them in detail in Chapter VI.OO [0 We start with the
observation that the points Of a scheme do not ingeneral look anything like one another: we have nonclosed points
as well asclosed ones; and if we are working over a non-algebraically closed field, theneven closed points may be
distinguished by having different residue fields.Similarly, if we are working over Z, different points may have
residue fieldsof different characteristic; and if we extend the notion of point to "closedsubscheme whose underlying
topological space is a point,” we have an evengreater variety. And, of course, a morphism between schemes will not
at allbe determined by the associated map on underlying point sets.[] [ There is, however, a way of looking at a
scheme——uvia its functor ofpoints- that reduces it in effect to a set. More precisely, we may think ofa scheme as an
organized collection of sets, a functor on the category ofschemes, on which the familiar operations on sets behave
as usual. In thissection we will examine this functorial descriptiC] O n. A big payoff is that wewill see the category of
schemes embedded in a larger category of functors,in which many constructions are much easier. The advantage of
this issomething like the advantage in analysis of working with distributions, notjust ordinary functions; it shifts the
problem of making constructions inthe category of schemes to the problem of understanding which functorscome
from schemes. Further, many geometric constructions that arise inthe category of schemes can be extended to
larger categories of functors ina useful way.

Page 4



0000 O, tushu007.com
<O QO00d0oods>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 5



