＜＜几何测度论＞＞

图书基本信息
书名：＜＜几何测度论＞＞
13位ISBN编号：9787500292085
10位 I SBN编号：7506292084
出版时间：2009．5
出版时间：世界图书出版公司
作者：摩根
页数： 248
版权说明：本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。

更多资源请访问：http：／／www．tushu007．com

第一图书网，tushu007．com

＜＜几何测度论＞＞

前言

Singula geometry governsthe physical univers：soap bubble clustersmeeting along singular curves，black holes，defectsin materials，chaotic turbulence，crys tal growth．Thegoverning principle isoften somekind of energy minimization．Geometric measure theory providesageneral framework for understanding such minimal shapes，a priori allowing any imaginable singularity and then proving that only certain kindsof structuresoccur．

Jean Taylor used new tools of geometric measure theory to derivethe singular structure of soap bubble clustersand seacreatures，recorded by J．Plateau over acentury ægo（ $\wp e$ Section 13．9）．R．Schoen and S．－T． Yau used minimal surfaces in their original proof of the positivemassconjecture in cosmology，recently extended to a proof of the Riemannian PenroæConjecture by H．Bray．David H offman and hiscollaboratorsused modern computer technology to discover some of the first new complete embedded minimal surfacesin ahundred years
（Figure6．13），some of which look just like certain polymers．Other mathematiciansare now investigating singular dynamics，such ascrystal growth．New software computescrystalsgrowing amidst swirling fluidsand temperatures，aswell asbubblesin equilibrium，ason the front cover of thisbook．（See Section 16．8．） In 2000 ，H utchings，Morgan，Ritorr，and Rosannounced aproof of theDouble BubbleConjecture，which saysthat the familiar double soap bubble providesthe least－areaway to enclose and separate two given volumes of air．The planar case was proved by my 1990W illiamsC ollege NSF＂SMALL＂undergraduate reæarch Geometry Group［Foisy et al．］．Thecase of equal volumesin R3wasproved by H ass，Hutchings，and Schlafly with the help of computersin 1995．Thegeneral R3 proof hasnow been generalized to Rn by Reichardt．There are partial resultsin spheres，tori，and Gaussspace，an important example of amanifold with density（ $\wp e C h a p t e r s 18$ and 19）．Thislittle book providesthe newcomer or graduate student withan illustrated introduction to geometric measure theory ：the basic ideas，terminology，and results It developed from my one semester course at MIT for graduate studentswith asmester of graduatereal analysisbehind them．I have included afew fundamental argumentsand asuperficial discussion of the regularity theory，but my goal ismerely to introduce the subject and make the standard text．Geometric M easure Theory by H．Federer．more accessible．

内容概要

Singula geometry governsthe physical universe：soap bubble clustersmeeting along singular curves，black holes，defectsin materials，chaotic turbulence，crys tal growth．Thegoverning principle isoften somekind of energy minimization．Geometric measure theory providesageneral framework for understanding such minimal shapes，apriori allowing any imaginable singularity and then proving that only certain kinds of structuresoccur．

书籍目录
Preface 1 Geometric MeasureTheory2 Measures3 Lipschitz Functionsand Rectifiable Sets4 Normal and RectifiableCurrents5 TheCompactnessTheorem and the Existence of A rea Minimizing Surfaces6 Examples of A rea Minimizing Surfaces7 The A pproximation Theorem8 Survey of Regularity Results9 Monotonicity and Oriented T angent Cones10 The Regularity of A rea Minimizing Hypersurfacesil Flat ChainsModulo v V arifolds，and－Minimal Sets12 MiscellaneousU seful Results13 Soap BubbleClusters14 Proof of Double Bubble Conjecture15 TheH exagonal H oneycomb and Kelvin Conjectures16 Immiscible Fluidsand Crystals17

Isoperimetric Theoremsin General Codimension18 Manifoldswith Density and Perelman＇sProof of the PoincareConjecture19 Double Bubblesin Spheres，Gauss Space，and T oriSolutionsto ExercisesBibliographyIndex of SymbolsN ame IndexSubject Index

Abstract

章节摘录 14．20 Theorem（H utchingset al．Theorem 7．1）Thestandard doublebubble in R3isthe unique area minimizing doublebubblefor prescribed volumes Proof Let B bean area minimizing double bubble．By Corollary 14．11 and Propo－sition 14．19，either both regionsare connected or one of larger volume and smaller pressure isconnected and the other of smaller volume and larger pressure hastwo components．By the H utchings structure theorem，14．10，B iseither as in Figure14．16．1 or as in Figure14．17．1 By 14．16 and 14．18，B must be the standard doublebubble．Remark Although the final competitorsare proved unstable，earlier stepssuch as symmetry（14．3）assume areaminimization．It remainsconjectural whether the standard doublebubble isthe unique stable double bubble． 14.210 pen Q uestions It isconjectured by H utchingset al．that the stan－dard doublebubble in Rn isthe unique stable doublebubble．Sullivan［Sullivan and Morgan，Proposition 2］has conjectured that the standard k－bubble in $R n \quad(k<n+1)$ isthe unique minimizer enclosing k regions of prescribed volume．For now，even the standard triplebubble in R3（Figure 13．3．1）seemsinaccessible． Physical Stability A sexplained in Section 13．14，the technically correct physical soap cluster problem isto minimize the H elmholtz free energy $\mathrm{F}=\mathrm{U}$－TSto enclose and æparate given quantitiesrather than volumes of gas （at fixed temperature T），although the difference isnegligible in practice．HereU issurfaceenergy and Sis entropy of the enclosed gas．To show that every round sphere minimizesF for asinglegiven quantity of gas，sincea round sphere minimizessurface area and hence U for fixed volume，it sufficesto show that the number N of gas molesisan increasing function of volumev，which holdsby scaling if for exampleN isproportional to Pun for $n>$ $1 / 3$（for an ideal gasn $=1$ ）．Here isthe smilar result for double bubbles in more detail：Proposition Assuming that the number N of gasmolesisproportional to P for $n>1 / 3$ ，a standard double bubble minimizesH elmholtz free energy for enclosing and separating two given masses of air．Proof TheH elmholtz free energy of a double bubble dependson the surface area and the volumes．For given volumes，the standard doublebubble minimizes surfaceenergy（Theorem 14．20）and henceF．A seither volumegoesto 0，the entropy Sgoesto minusinfinity and F goesto infinity．A seither volume goesto infinity，the surface area and hence F go to infinity．

本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。

更多资源请访问：http：／／www．tushu007．com

