代数几何中的拓扑方法

出版时间:2004-11  出版社:北京世图  作者:Friedrich Hirzebruch  页数:234  
Tag标签:无  

内容概要

H. CARTAN and J.-P. SERRE have shown how fundamental theoremson holomorphically complete manifolds (STEIN manifolds) can be for-mulated in terms of sheaf theory. These theorems imply many facts offunction theory because the domains of holomorphy are holomorphicallycomplete. They can also be applied to algebraic geometry because thecomplement of a hyperplane section of an algebraic manifold is holo-morphically complete. J.-P. SERRE has obtained important results onalgebraic manifolds by these and other methods. Recently many of hisresults have been proved for algebraic varieties defined over a field ofarbitrary characteristic. K. KODAIRA and D. C. SPENCER have alsoapplied sheaf theory to algebraic geometry with great success. Theirmethods differ from those of SERRE in that they use techniques fromdifferential geometry (harmonic integrals etc.) but do not make any useof the theory of STEIN manifolds. M. F. ATIVAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind onalgebraic manifolds with the help of sheaf theory.

书籍目录

Introduction Chapter One. Preparatory material  1. Multiplicative sequences  2. Sheaves  3. Fibre bundles  4. Characteristic classes Chapter Two. The cobordism ring  5. PONTRJAGIN numbers  6. The ring  7. The cobordism ring  8. The index of a 4 k-dimensional manifold  9. The virtual index Chapter Three. The TODD genus  10. Definition of the TODD genus  11. The virtual generalised TODD genus  12. The T-characteristic of a G L (q, C)-bundle  13. Split manifolds and splitting methods  14. Multiplicative properties of the TODD genus Chapter Four. The RIEMANN-ROCH theorem for algebraic manifolds  15. Cohomology of compact complex manifolds  16. Further properties of the Xy-characteristic 17. The virtual Xy-characteristic 18. Some fundamental theorems of KODAIRA 19. The virtual Xy-characteristic for algebraic manifolds 20. The RIEMANN-ROCH theorem for algebraic manifolds and complex analytic line bundles 21. The RIEMANN-ROCH theorem for algebraic manifolds and complex analytic vector bundlesAppendix One by R. L. E. SCHWARZENBERGER 22. Applications of the RIEMANN-ROCH theorem 23. The RIEMANN-ROCH theorem of GROTHENDIECK 24. The GROTHENDIECK ring of continuous vector bundles 25. The ATIYAH-SINGER index theorem 26. Integrality theorems for differentiable manifoldsAppendix Two by A. BOREL A spectral sequence for complex analytic bundlesBibliographyIndex

图书封面

图书标签Tags

评论、评分、阅读与下载


    代数几何中的拓扑方法 PDF格式下载


用户评论 (总计4条)

 
 

  •   这本书是绝对的好书,因为作者学问和人品都超好!
  •   还可以,影印质量都这样
  •   作者是德国战后最重要的数学家,大家手笔,需要好好读
  •   本书第一版1956年就出了, 到现在还在印发, 只能说明它确实是经典!Hirzebruch 是德国Max-Plank数学研究所的牛人。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7