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[0 O Except for minor modifications, this monograph represents the lecture notes of a course | gave at UCLA
during the winter and spring quarters of 1991. My purpose in the course was to present the necessary background
material and to show how ideas from the theory of Fourier integral operators can be useful for studying basic topics
in classical analysis, such as oscillatory integrals and maximal functions. The link between the theory of Fourier
integral operators and classical analysis is of course not new, since one of the early goals of microlocal analysis was
to provide variable coefficient versions of the Fourier transform. However, the primary goal of this subject was to
develop tools for the study of partial differential equations and, to some extent, only recently have many classical
analysts realized its utility in their subject.
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