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0000 OO0 Thereisevidence that L. ferrooxidans is also capable of fixing atmospheric nitrogen. Genomic
DNA from the L. ferrooxidans type strain was reported to give a positive hybridization signal with a nifHDK gene
probe from Klebsiella pneumoniae. L. ferrooxidans was also shown to reduce acetylene to ethylene and oxidize
ferrous iron to ferric iron at low oxygen concentrations. This ability was repressed by added ammonium ions,
which is indicative of the ability to fix nitrogen. The ability of T. thiooxidans to fix nitrogen is uncertain. No
hybridization signal was obtained when a nifHDK gene probe from Klebsiella pnuemoniae was used against
chromosomal DNA from T. thiooxidans ATCC 8085, but a positive signal was obtained when a T. ferrooxidans
nifHDK probe was hybridized to an unidentified T. thiooxidans isolate. The role of nitrogen fixation in bioleaching
operations is difficult to predict. The dissolution of atmospheric ammonia in acid solutions could provide sufficient
ammonium to suppress nitrogen fixation.Furthermore, nitrogen fixation is inhibited under fully aerobic conditions
therefore might not occur in a well-aerated leaching operation. In the highly-aerated, high oxidation rate, BIOX
tanks used to pretreat gold-bearing arsenopyrite ores, addition of a small amount of ammonia in the form of
low-grade fertilizer is required to enhance mineral oxidation. 1.5 Energy Sources 1.5.1 Iron oxidation As stated
earlier, the energy requirements for growth of both T. ferrooxidans and L. ferrooxidans are able to be met by the
oxidation of ferrous to ferric iron under aerobic conditions.@ Work by Blake and colleagues on the components of
iron oxidation in acidophilic bacteria has revealed that the ability to oxidize iron appears to have evolved several
times. At least four unique iron-oxidation mechanisms exist. Two of these mechanisms are found in the mesophilic
acidophiles. The pathway for iron oxidation in T.ferrooxtdans is characterized by the presence of large amounts of
the small copper protein, rusticyanin and c-type cytochromes. Rusticyanin is not detectable in L. ferrooxidans or in
any of the moderately or extremely thermophilic iron-oxidizers. A novel red cytochrome (cytochrome 579) which
is clearly different from cytochrome a-, b-or c-type hemes and not found in the other iron-oxidizers, dominates
the electron transport chain of L. ferrooxidans. This unique cytochrome was redox active with ferrous sulfate. The
components of the iron-oxidation pathway in T. ferrooxidans have been relatively well studied. These are a 92 kDa
membrane porin, an Fe ( 11') oxidase, cytochrome C55v rusticyanin and a cytochrome ¢ oxidase of the aa3-type.
All the above components have been isolated and characterized, the amino acid sequence for rusticyanin has been
determined and gene for the Fe (I ) oxidase have been cloned and sequenced. The exact order of the components
and particularly, the position of rusticyanin in the passage of the electrons is uncertain. In a recent review it has
been postulated that the role of rusticyanin is to broaden the electron pathway from cytochrome C552 to the
cytochrome oxidase as illustrated below.
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