出版时间:2011-8 出版社:中国科学技术大学出版社 作者:郭明乐,黄旭东 编著
内容概要
郭明乐等的《概率论与数理统计》是高等师范院校数学专业的概率论与数理统计教材,主要内容包括:随机事件与概率,随机变量及其概率分布,随机变量的数字特征,大数定律与中心极限定理,样本与抽样分布,参数估计,假设检验,方差分析与线性回归分析等。本教材注重体现概率论与数理统计的实际应用背景,精简、压缩一些传统内容,淡化计算技巧的训练,加强理论基础的培养;精选大量例题及习题,每节根据教学大纲的要求和复习需要,配置相应的习题。
《概率论与数理统计》可供高等学校数学专业与统计学专业的教师和学生作为教材使用,亦可供其他有关专业人员参考。
书籍目录
前言
第1章 随机事件和概率
1.1 随机事件和样本空间
1.1.1 随机试验与样本空间
1.1.2 随机事件及其运算
习题1.1
1.2 概率和频率
1.2.1 频率的定义
1.2.2 概率的定义
1.2.3 概率的性质
习题1.2
1.3 古典概型
1.3.1 古典概型的定义
1.3.2 古典概型的计算举例
习题1.3
1.4 几何概型
1.4.1 几何概型的定义
1.4.2 几何概型的计算举例
习题1.4
1.5 条件概率
1.5.1 条件概率的定义
1.5.2 乘法公式
1.5.3 条件概率的性质
1.5.4 全概率公式与贝叶斯公式
习题1.5
1.6 独立性
1.6.1 两个事件的独立性
1.6.2 多个事件的独立性
1.6.3 独立试验序列
习题1.6
第2章 随机变量及其概率分布
2.1 随机变量
习题2.1
2.2 离散型随机变量及其概率分布
2.2.1 离散型随机变量及其分布列
2.2.2 种重要的离散型概率分布
习题2.2
2.3 随机变量的分布函数
习题2.3
2.4 连续型随机变量及其概率分布
2.4.1 连续型随机变量及其密度函数
2.4.2 三种重要的连续型分布
习题2.4
2.5 多维随机变量及其分布
2.5.1 多维随机变量及其联合分布函数
2.5.2 边际分布函数
2.5.3 二维离散型随机变量
2.5.4 二维连续型随机变量
习题2.5
2.6 随机变量的独立性
2.6.1 两个随机变量的独立性
2.6.2 多个随机变量的独立性
习题2.6
2.7 随机变量函数的分布
2.7.1 一维随机变量函数的分布
2.7.2 多维随机变量函数的分布
习题2.7
2.8 条件分布
2.8.1 二维离散型随机变量的条件分布
2.8.2 连续型随机变量的条件分布
习题2.8
第3章 随机变量的数字特征
3.1 数学期望
3.1.1 随机变量的数学期望
3.1.2 随机变量函数的数学期望
3.1.3 数学期望的性质
习题3.1
3.2 方差和矩
3.2.1 方差
3.2.2 方差的性质
3.2.3 切比雪夫不等式
3.2.4 矩
习题3.2
3.3 协方差与相关系数
3.3.1 协方差
3.3.2 相关系数
3.3.3 多维随机变量的数学期望与协方差矩阵
习题3.3
3.4 条件数学期望
3.4.1 条件数学期望的定义及性质
3.4.2 全期望公式
3.4.3 回归与线性回归
习题3.4
3.5 特征函数
3.5.1 特征函数的定义
3.5.2 特征函数的性质
3.5.3 惟一性定理
习题3.5
第4章 大数定律与中心极限定理
4.1 大数定律
4.1.1 大数定律的定义
4.1.2 大数定律
习题4.1
4.2 随机变量序列的两种收敛性
4.2.1 依概率收敛
4.2.2 按分布收敛
习题4.2
4.3 中心极限定理
4.3.1 中心极限定理问题的提出
4.3.2 中心极限定理
4.3.3 独立不同分布下的中心极限定理
习题4.3
第5章 样本与抽样分布
5.1 数理统计的基本概念
5.1.1 总体与个体
5.1.2 样本
5.1.3 经验分布函数
习题5.1
5.2 统计量及其分布
5.2.1 统计量与抽样分布
5.2.2 样本的数字特征
5.2.3 样本偏度与峰度
5.2.4 次序统计量及其分布
习题5.2
5.3 常用的抽样分布
5.3.1 x2分布
5.3.2 t分布
5.3.3 f分布
5.3.4 分位数
习题5.3
5.4 正态总体的抽样分布
习题5.4
5.5 充分统计量
5.5.1 充分统计量的定义
5.5.2 因子分解定理
习题5.5
第6章 参数估计
6.1 参数的点估计
6.1.1 问题的提法
6.1.2 求估计量的方法
习题6.1
6.2 点估计的评价标准
6.2.1 无偏性
6.2.2 有效性
6.2.3 相合性
习题6.2
6.3 一致最小方差无偏估计
6.3.1 均方误差
6.3.2 一致最小方差无偏估计
习题6.3
6.4 区间估计
6.4.1 区间估计的概念
6.4.2 枢轴量法
6.4.3 单个正态总体参数的置信区间
6.4.4 两个正态总体参数的置信区间
6.4.5 0—1分布参数的区间估计
6.4.6 单侧置信区间
习题6.4
第7章 假设检验
7.1 假设检验的基本思想与概念
7.1.1 假设检验问题
7.1.2 假设检验的基本思想及推理方法
习题7.1
7.2 总体均值的假设检验
7.2.1 单个总体均值的假设检验
7.2.2 两个总体均值之差的假设检验
习题7.2
7.3 两个正态总体的假设检验
7.3.1 单个正态总体方差的假设检验
7.3.2 两个正态总体方差比的检验
习题7.3
7.4 假设检验中的其他问题
7.4.1 区间估计与假设检验的关系
7.4.2 假设检验中的p值
习题7.4
7.5 分布假设检验
7.5.1 分布律的假设检验
7.5.2 列联表的独立性检验
习题7.5
第8章 方差分析和线性回归分析
8.1 单因素方差分析
8.1.1 数学模型
8.1.2 方差分析
习题8.1
8.2 两因素方差分析
8.2.1 无交互作用情形的方差分析
8.2.2 有交互作用情形的方差分析
习题8.2
8.3 线性回归分析
8.3.1 一元线性回归
8.3.2 多元线性回归
习题8.3
附表
参考文献
章节摘录
版权页:插图:
编辑推荐
《概率论与数理统计》的叙述以丰富的实际背景为依托,力求概念来源于实际问题,使读者对“概率论与数理统计”课程的学习增加更多直观性的认识,有助于读者的理解。在章节结构安排和内容的引入方面,以例子为引导,把本章的基本知识点进行提点,引起读者的学习和阅读兴趣,通过案例引发思考,从而加深对理论的理解和接受程度。本教材的叙述采取了图文并茂的方式,全书有大量的图表,有助于读者对内容的理解。本教材在习题的选择上做了较大努力。概率论历史悠久,自从其公理体系建立之后,已经发展出了整座宏伟的学科建,筑。作为姊妹学科的数理统汁,以概率论为理论基础,从观察资料出发进行分析和推断。是广泛应用的数学理论和方法。概率论与数理统计已经成为与现实世界联系最密切、应用最广泛的数学学科之一。
图书封面
评论、评分、阅读与下载