出版时间:2009-7 出版社:周勇 中国科学技术大学出版社 (2009-07出版) 作者:周勇 编 页数:272
前言
大学最重要的功能是向社会输送人才。大学对于一个国家、民族乃至世界的重要性和贡献度,很大程度上是通过毕业生在社会各领域所取得的成就来体现的。中国科学技术大学建校只有短短的五十年,之所以迅速成为享有较高国际声誉的著名大学之一,主要就是因为她培养出了一大批德才兼备的优秀毕业生。他们志向高远、基础扎实、综合素质高、创新能力强,在国内外科技、经济、教育等领域做出了杰出的贡献,为中国科大赢得了“科技英才的摇篮”的美誉。2008年9月,胡锦涛总书记为中国科大建校五十周年发来贺信,信中称赞说:半个世纪以来,中国科学技术大学依托中国科学院,按照全院办校、所系结合的方针,弘扬红专并进、理实交融的校风,努力推进教学和科研工作的改革创新,为党和国家培养了一大批科技人才,取得了一系列具有世界先进水平的原创性科技成果,为推动我国科教事业发展和社会主义现代化建设做出了重要贡献。据统计,中国科大迄今已毕业的5万人中,已有42人当选中国科学院和中国工程院院士,是同期(自1963年以来)毕业生中当选院士数最多的高校之一。其中,本科毕业生中平均每1000人就产生1名院士和七百多名硕士、博士,比例位居全国高校之首。还有众多的中青年才俊成为我国科技、企业、教育等领域的领军人物和骨干。在历年评选的“中国青年五四奖章”获得者中,作为科技界、科技创新型企业界青年才俊代表,科大毕业生已连续多年榜上有名,获奖总人数位居全国高校前列。
内容概要
纳米材料是20世纪80年代中期一个迅速发展的材料科学领域,受到人们广泛的关注。《一维纳米结构材料概念、应用和展望(英文版)》选择性的汇集了国内外中国科技大学校友在一维纳米材料的最新科技研究成果。书中介绍了一维纳米材料包括纳米线、纳米管和纳米带等当今研究的趋势、相关技术与未来发展方向,是化学、物理和材料等学科的基础理论研究与应用技术的前沿集成反映。 《一维纳米结构材料概念、应用和展望(英文版)》适合于高等学校、科研院所以及相关企业从事纳米材料研发的科研人员和管理工作者,同时也可作为相关专业的师生和爱好者学习参考用书。
书籍目录
Preface of Alumni's SerialsPrefaceChapter 1 Lipid Nanotubes and Peptide Nanotubes: Formation and Applications for Scaffolding NanomaterialsAbstract1.1 Introduction1.2 Formation of LNTs1.3 Formation of PNTs1.4 Templating nanostructures1.4.1 LNT-templating nanostructures1.4.2 PNTs templating nanostructures1.5 ConclusionAcknowledgmentsReferencesChapter 2 Introduction of Nanodevices Based on ZnO Nanowires/Nanobelts2.1 Introduction 2.2 Transport properties of ZnO nanowires/nanobelts2.2.1 Field effect transistor based on ZnO NWs2.2.2 Schottky diodes based on ZnO NBs/NWs2.3 Piezoelectronics based on ZnO NWs/ NBs2.3.1 Piezoelectricity and structure of ZnO 2.3.2 Piezoelectric nanogenerators2.4 Optoelectronics based on ZnO NWs2.4.1 UV detector2.4.2 Nanowire based nanolasers2.4.3 Nanowire array LED2.5 Chemical and biological sensors based on ZnO nanowires2.6 Doping modification, field emission and mechanical properties 2.6.1 Metal doping of ZnO2.6.2 Field emission properties of ZnO nanowire arrays2.6.3 Nanobalance based on ZnO nanowire2.7 SummaryReferencesChapter 3 Elastic Properties of One-dimensional Metal Nanoparticles Studied by Time-resolved Spectroscopy3.1 Introduction3.1.1 Metal nanoparticles 3.1.2 Time-resolved spectroscopy3.2 Theory3.3 Experimental apparatus and techniques3.3.1 Synthesis of au nanorods3.3.2 Transient absorption apparatus3 4 Experimental results 3.4.1 Characterization of au nanorods3.4.2 Transient absorption experiment3.4.3 Elastic properties of gold nanorods3.4.4 Discussion of the elastic moduli of metal nanorods3.5 Summary and conclusionAcknowledgmentReferencesChapter 4 Microwave-assisted Rapid Preparation of One-dimensional Nanostructures Abstract 4.1 Microwave-assisted ionic liquid (MAIL) method4.1.1 Preparation of elemental 1-D nanostructures4.1.2 Preparation of 1-D nanostructures of metal oxides4.1.3 Preparation of metal chalcogenide 1-D nanostructures4.1.4 Preparation of nanostructures with other morphologies4.2 Microwave-assisted polythiol reduction (MPTR) method4.3 Microwave-assisted polyol method4.4 Microwave-assisted polyol-water method4.5 Microwave-assisted aqueous solution methodReferencesChapter 5 Some Recent Developments in the Solution-Phase Synthesis of One-Dimensional Inorganic NanostructuresAbstract5.1 Introduction5.2 Coordination compounds: structural characteristics to direct anisotropic growth5.2.1 Simple complexes5.2.2 Linear coordination cluster compounds5.2.3 Metal-polymer coordination chains5.2.4 3-D coordination polymers5.3 Surfactant-based systems: microreactors to confine anisotropic growth5.3.1 Rod-like micelles5.3.2 Inorganic-surfactant intercalated mesostructures5.4 Etching and twinning: two contributions to induce anisotropic growth5.4.1 Localized oxidative etching on single-crystal seeds5.4.2 Twin defects to break cubic symmetry5.5 Concluding remarksAcknowledgementsReferencesChapter 6 One-Dimensional Nanoscale HeterostructuresAbstract6.1 Introduction6.2 Synthetic routes for 1 - D nanoscale heterostructures6.2.1 Vapor phase methods6.2.2 Solution methods 6.2.3 Lithography6.2.4 Electrospinning6.2.5 Template directed methods6.3 Typical 1 - D nanoscale heterostructures6.3.1 Co-axial nanowires6.3.2 Segmented nanowires6.4 Conclusion and remarksReferencesChapter 7 Bio Meets Nano: DNA-Based Synthesis and Assembly Toward One-Dimensional Nanostructures7.1 Introduction7.2 DNA templated electroless deposition for metallic nanowire fabrications7.3 DNA directed assembly of nanoparticle linear arrays7.3.1 DNA encoded one-dimensional array of gold nanoparticles7.3.2 RCA facilitated assembly of long, sturdy and rigid DAEE array suitable for protein organization7.4 One dimensional self-assembly on DNA-wrapped carbon nanotub7.5 DNA nanotubes: constructions and functionalizations7.6 Other examples of DNA-based one dimensional nanostructures7.7 OutlookAcknowledgementsReferencesChapter 8 Soft Chemistry Routes to Synthesis of One-Dimensional Nanostructures and Their Properties8.1 Introduction8.2 Rare earth compound 1-D nanostructures8.3 1-D nanostructures templated by organic additives8.4 Biomimetic synthesis of 1-D nanostructures8.5 Other functional 1-D nanostructured materials8.6 The formation mechanism of 1-D nanostructures8.7 Summary and outlookAcknowledgementReferences
章节摘录
插图:When a NW was deflected, the outer surface was stretched and the innersurface was compress. According to the piezoelectric effect, an electric fieldEz was generated along the Z axis of the NW. This induced a voltage dropVs- to Vs across the top end of the NW with first order approximation.This potential drop was created by the relative displacement of Zn2 + cationsand 02- anions, so it cannot be freely moved or neutralized without anyinjected carriers. Thus this potential is persisted in the deflection process ofthe NWs. The AFM tip is a Si tip coating with Pt layer. Due to the large workfunction difference of Pt and ZnO, they form a Schottky contact between thetip and the NW. When the AFM tip was in contact with the front end(stretched side) of the NW, which has a positive bias, the metal andsemiconductor contact is negative biased. The current flow was prohibited bythe Schottky contact. When the tip moved the compressed side of this NW,the metal and semiconductor contact is positive biased. This produced a suddenincrease in the conducting current. This current is formed by the voltage drop acrossthe contacts. The free electrons flow from the loop into the NW and neutralizedionic charges formed by the piezoelectric effect. Thus the VL starts to drop to zero.This piezoelectric energy formation and releasing principle is shown in Figure 2.16which is the basic working principle of nanogenerator and nanopiezoelectronics. In this section, a new field in nanotechnology, nanopiezotronics isintroduced. Working principle of these devices relies on the unique coupling ofZnO's piezoelectric and semiconducting properties.In the demonstratedwork, piezotronics devices based on ZnO NW exhibit potentials to convertbiological mechanical energy, acoustic/ultrasonic vibration energy, and biofluidhydraulic energy into electricity. This is a new path way for energy converting andcollecting, which is a crucial progress for self-power nanodevices.
编辑推荐
《一维纳米结构材料概念、应用和展望(英文版)》:当代科学技术基础理论与前沿问题研究丛书:中国科学技术大学校友文库“十一五”国家重点图书
图书封面
评论、评分、阅读与下载