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章节摘录

版权页：   插图：   Increase Cohesion Several tactics involve moving responsibilities from one module to
another. The purpose of moving a responsibility from one module to another is to reduce the llkelihnnd of side
effects affecting other responsibilities in the original module. Increase semantic coherence. If the responsibilities A
and B in a module do not serve the same purpose, they should be placed in different modules. This may involve
creating a new module or it may involve moving a responsibility to an existing module. One method for identifying
responsibilities to be moved is to hypothesize likely changes that affect a module. If some responsibilities are not
affected by these changes, then those responsibilities should probably be removed. Reduce CouDlina We now turn
to tactics that reduce the couoling between modules. Encapsulate. Encapsulation introduces an explicit interface to
a module. This interface includes an application programming interface (API) and its associated responsibilities,
such as "perform a syntactic transformation on an input parameter to an internal representation." Perhaps the most
common modifiability tactic, encapsulation reduces the probability that a change to one module propagates to
other modules. The strengths of coupling that previously went to the module now go to the interface for the
module. These strengths are, however, reduced because the interface limits the ways in which external
responsibilities can interact with the module (perhaps through a wrapper). The external responsibilities can now
only directly interact with the module through the exposed interface (indirect interactions, however, such as
dependence on quality of service, will likely remain unchanged). Interfaces designed to increase modifiability
should be abstract with respect to the details of the module that are likely to change that is, they should hide those
details.
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