0000 O, tushu007.com
<TCP/IPOODOOMNOO>>

gobooo
ODO00O<<TCP/IPOODOODOO>>
1300 ISBNLI O [0 9787302030942
1000 ISBNUI U 1J 7302030944
00000 1998-10
gobobooobboodaad
goooo

guooobbggoooopbrbbgoooobbbgooooon

00000000 http://www.tushu007.com

Page 1



0000 O, tushu007.com
<TCP/IPOODOOMNOO>>

goon

oooo
TCP/IPOOOOOOOOOOOOOOOO/M
000000000000 00000000O0000
O/0000000000000000000000
000000000000 0O0O0O0/0000o0o0oa
00000000000 0RPCO
O000o00Ooon

000000000000 00b000b0O
ooooo

O00BSDO OO O OAT&TTLIO O WindowsSockets
aoad

O O O WindowsSocketst O O O O Internetd
OO0o00Oo0OTCP/IPODOO0OOOOOOOOWindows
950 WindOWSNTO Win32O0 O O 0O O O O O Windows
SocketAPID O OO O OO

Page 2



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

good

Contents

Foreword

Preface

Chapter 1 Introduction And Overview

1.1 Use OfTCP/IP

1.2 Designing Applications For A Distributed Environment
1.3 Standard And Nonstandard Application Protocols
1.4 An Example Of Standard Application Protocol Use
1.5 An Example Connection

1.6 Using TELNET To Access An Altemative Service
1.7 Application Protocols And Software Flexibility

1.8 Viewing Services From The Provider's Perspeclive
1.9 The Remainder Of The Text

1.10 Summary

Chapter 2 The Client Server Model And Software Design
2.1 Introduction

2.2 Molivation

2.3 Terminology And Concepts

2.3.1 Clients And Servers

2.3.2 Privilege And Complexity

2.3.3 Standard Vs. Nonstandard Client Software

2.3.4 Pardmeterization Of Clients

2.3.5 Connectionless Vs. Connection-Oriented Servers
2.3.6 Stateless Vs. Stateful Servers

2.3.7 A Stateful File Server Example

2.3.8 .Statelessness Is A Protocol Issue

2.3.9 Servers As Clients

2.4 Summary

Chapter 3 Concurrent Processing In Client-Server Software
3.1 Introduction

3.2 Concurrency In Networks

3.3 Concurrency In Servers

3.4 Terminology And Concepts

3.4.1 The Process Concept

3.4.2 Threads

3.4.3 Programs vs. Threads

3.4.4 Procedure Calls

3.5 An Example Of Concurrent Thread Creation

3.5.1 A Sequential C Example

3.5.2 A Concurrent Version

3.5.3 Timeslicing

3.6 Diverging Threads

3.7 Context Switching And Protocol Software Design
3.8 Concurrency And Asynchronous 1/o0

3.9 Concurrency Under UNIX

Page 3



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

3.10 Execuling A Separately Compiled Program
3.11 Summary

Chapter 4 Program Interface To Protocols

4.1 Introduction

4.2 Loosely Specified Protocol Software Interface
4.2.1 Advantages And Disadvantages

4.3 Interface Functionality

4.4 Conceptua! Interface Speclfication

4.5 Implementation Of An API

4.6 Two Basic Approaches To Network Communicatwn
4.7 The Basic 1/0 Functions Available In ANSI C
4.8 Hislory Of The UNIX Socket API

4.9 Summary

Chapter 5 TheSocketAPI

5.1 Introduction

5.2 The History Of Sockets

5.3 Speifving A Protocol Interface

5.4 The Socket Ahstraction

5.4.1 Sockel Descriptors

5.4.2 System Data Structures For Sockets

5.4.3 Using Sockets

5.5 Specifying An Endpoint Address

5.6 A Generic Address Slructure

5.7 Functions In The Sockel API

5.7.1 The WSAStartup Function

5.7.2 The WSACleanup Function

5.7.3 The Socket Function

5.7.4 The Connect Function

5.7.5 The Send Function

5.7.6 The Recv Function

5.7.7 The Closesocket Function

5.7.8 The Bind Function

5.7.9 The Listen Function

5.7.10 The Accept Function

5.7.11 Summary Of Socket Calls Used Wilh TCP
5.8 Utility Roulines For Integer Conversion

5.9 Using Socket Culls In A Program

5.10 Symbolic Constants For Socket Call Parameters
5.11 Summary

Chapter 6 Algorithms And Issues In Client Software Design
6.1 Inlroduclion

6.2 Leurning, Atgorilhms Instead Of Delails

6.3 Client Architecture

6.4 ldenlifying The Location OfA Server

6.5 Parsing An Address Argumenl

6.6 Looking Up A Domain Name

6.7 Looking Up A Well-Known Port By Name

Page 4



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

6.8 Port Numbers And Network Byte Order

6.9 Looking Up A Protocol By Name

6.10 The TCP Client Algorithm

6.11 Alloating A Socket

6.12 Choosing A Local Protocol Port Number

6.13 A Fundamenlal Problem In Choosing A Local IP Address
6.14 Connecting A TCP Socket To A Server

6.15 Commuiucating With The Server Using TCP
6.16 Reading A Response From A TCP Connection
6.17 Closing A TCP Connection

6.17.1 The Need For Partial Close

6.17.2 A Partial Close Operation

6.18 Programming A UDP Client

6.19 Coimected And Unconnected UDP Sockets
6.20 Using Connecl With UDP

6.21 Communicating With A Server Using UDP
6.22 Closing A Socket That Uses UDP

6.23 Partial Close For UDP

6.24 A Wai-ning About UDP Unreliability

6.25 Summarv

Chapter 7 Example Client Software

7.1 ntroduction

7.2 T he Imfwrtance Of Small Examples

7.3 Hiding Dpltails

7.4 An Example Pmcedure Library For Client Programs
7.5 Implementiation OfConTCP

7.6 Implementation Of ConUDP

7.7 A Procedure That Forms Connections

7.8 Using The Example Library

7.9 The OA YTIME Service

7.10 Implemenuation OfA TCP Client For DA YTIME
7.11 Reading From A TCP Connection

7.12 The TIME Service

7.13 Accessing The TIME Service

7.14 Accurale Times And Network Delays

7.15 A UDP Client For The TIME Service

7.16 The ECHO Service

7.17 ATCP Client For The ECHO Service

7.18 A UDP Client For The ECHO Service

7.19 Summary

Chapter 8 Algorithms And Issues In Server Software Design
8.1 Inlroduction

8.2 The Conceptual Senver Algorithm

Concurrent Vs. Iferative Servers
Connection-Oriented Vs. Connectionless Access
Connection-Oriented Servers

Connectionless Servers

Page 5



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

Failure, Reliability, And Statelessness

Optimizing Stateless Servers

Four Basil' Types Of Servers

Request Processing Time

llerative Server Algorithms

An Iterative, Connection-Oriented Server Algorithm
Binding To A Well-Known Address Using INADDR_ANY
Placing The Socket In Passive Mode

Accepling Connections And Using Them

An Iterative, Connectionless Server Algorithm

Forming A Reply Address In A Connectionless Server
Concurrent Server Algorithms

Masler And Slave Threads

A Concurrent Connectionless Server Algorithm

A Concurrent, Connection-Oriented Server Algorithm
Using Separate Programs As Slaves

Apparenl Concurrency Using A Single Thread

When To Use Each Server Type

A Summary of Server Types

The Important Problem Of Server Deadlock
Alternative Implementations

Summary

Chapter 9 Iterative, Connectionless Servers (UDP)

9.1 Introduction

9.2 Creating A Passive Socket

9.3 Thread Structure

9.4 An Example TIME Server

9.5 Summary

Chapter 10 Iterative, Connection-Oriented Servers (TCP)
10.1 Introduction

10.2 Allocating A Pcassive TCP Socket

10.3 A Server For The DAYTIME Service

10.4 Thread Structure

10.5 An Example DA YTIME Server

10.6 Closing Connections

10.7 Conneclion Termination And Server Vulnerability
10.8 Summary

Chapter 11 Concurrent, Connection-Oriented Servers (TCP)
11.1 Introduction

11.2 Concurrent ECHO

11.3 Iterative Vs. Concurrent Implementations

11.4 Thread Slructure

11.5 An Example Concurrent ECHO Server

11.6 Summary

Chapter 12 Singly-Threaded, Concurrent Servers (TCP)
12.1 Introduction

12.2 Data-driven Processing In A Server

Page 6



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

12.3 Data-Driven Processing With A Single Thread

12.4 Thread Structure OfA Singly-Threaded Server

12.5 An Example Singly-Threaded ECHO Server

12.6 Summary

Chapter 13 Multiprotocol Servers (TCP, UDP)

13.1 Introduction

13.2 The Motivation For Reducing The Number OfServers
13.3 Multiprotocol Server Design

13.4 Thread Structure

13.5 An Example Multiprotocol DAYTIME Server

13.6 The Concept Of Shared Code

13.7 Concurrent Multiprolocol Servers

13.8 Summary

Chapter 14 Multiservice Servers (TCP, UDP)

14.1 Introduction

14.2 Consolidaling Servers

14.3 A Conneclionless, Multiservice Server Design

14.4 A Connection-Oriented, Multiservice Server Design
14.5 A Concurrent, Connection-Oriented, Multiservice Server
14.6 A Singly-Threaded, Multiservice Server Implementation
14.7 Invoking Separate Programs From A Multiservice Server
14.8 Multiservice, Multiprotocol Designs

14.9 An Example Multiservice Server

14.10 Static and Dynamic Server Configuration

14.11 An Example Super Server, Inetd

14.12 Summary

Chapter 15 Uniform, Efficient Management Of Server Concurrency
15.1 Introduction

15.2 Choosing Between An Iteralive And A Concurrent Design
15.3 Level Of Concurrency

15.4 Demand-Driven Concurrency

15.5 The Cost Of Concurrency

15.6 Overhead And Delay

15.7 Small Delays Can Matter

15.8 Thread Preallocation

15.8.1 Preallocation Techniques

15.8.2 Preallocation In A Connection-Oriented Server
15.8.3 Preallocation In A Connectionless Server

15.8.4 Preallocation, Bursty Traffic, And NFS

15.8.5 Preallocation On A Multiprocessor

15.9 Delayed Thread Allocation

15.10 The Uniform Basis For Both Techniques

15.11 Combining Techniques

15.12 Summary

Chapterl6é Concurrency In Clients

16.1 Introduction

16.2 The Advantages Of Concurrency

Page 7



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

16.3 The Motivation For Exercising Control

16.4 Concurrenl Contact With Multiple Servers

16.5 Implemenling Concurrent Clients

16.6 Singly-Threaded Implementations

16.7 An Example Concurrent Client That Uses ECHO
16.8 Execution OfThe Concurrent Client

16.9 Managing A Timer

16.10 Example Output

16.11 Concurrency In The Example Code

16.12 Summary

Chapter 17 Tunneling At The Transport And Application Levels
17.1 Introduction

17.2 Multiprotocol Environments

17.3 Mixing Network Technologies

17.4 Dynamic Circuit Allocalion

17.5 Encapsulation And Tunneling

17.6 Tunneling Through An IP Intemet

17.7 Applicalion-Level Tunneling Between Clients And Servers
17.8 Tunneling, Encapsulation, And Dialup Phone Lines
17.9 Summary

Chapter 18 Appiication Level Gateways

18.1 Inlroduction

18.2 Clients And Servers In Constrained Environments
18.2.1 The Reality Of Multiple Technologies

18.2.2 Computers With Limited Functionality

18.2.3 Connectivity Constraints That Arise From Security
18.3 Using Application Gateways

18.4 Interoperability Through A Mail Gateway

18.5 Implementation Of A Mail Gateway

18.6 A Comparison Of Application Gateways And Tunneling
18.7 Application Gateways And Limited Functionality Systems
18.8 Application Gateways Used For Security

18.9 Application Gateways And The Extra Hop Problem
18.10 An Example Application Gateway

18.11 Delails OfA Web-Based Application Gateway

18.12 Invoking A CGI Program

18.13 URLs For The RFC Application Gateway

18.14 A General-Purpose Application Gateway

18.15 Operation Of SLIRP

18.16 How SLIRP Handles Connections

18.17 IP Addressing And SURP

18.18 Summary

Chapter 19 External Data Representation (XDR)

19.1 Introduction

19.2 Representations For Data In Computers

19.3 The N-Squared Conversion Problem

Network Standard Byte Order

Page 8



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

A De Facto Standard External Data Representation

XDR Datu Types

Implicil Types

Software Supporl For Using XDR

XDR Library Routines

Building A Message One Piece At A Time

Conversion Routines In The XDR Library

XDR Streams. 1/0, and TCP

Records, Record Boundaries, And Datagram 1/0

Summary

Chapter 20, Remote Procedure Call Concept (RPC)

20.1 Introduction

20.2 Remote Procedure Call Model

20.3 Two Paradigms For Building Distributed Programs

20.4 A Conceptual Modet For Conventional Procedure Calls
20.5 An Extension Of the Procedural Model

20.6 Execution Of Conventional Procedure Call And Return
20.7 The Procedural Model In Distributed Systems

20.8 Analogy Between Client-Server And RPC

20.9 Distributed Computation As A Program

20.10 Sun Microsystems' Remote Procedure Call Definition
20.11 Remote Programs And Procedures

20.12 Reducing The Number Of Arguments

20.13 Identifying Remote Programs And Procedures

20.14 Accommaodating Multiple Versions OfA Remote Program
20.15 Mutual Exclusion For Procedures In A Remote Program
20.16 Communication Semantics

20.17 At Least Once Semantics

20.18 RPC Relransmission

20.19 Mapping A Remote Program To A Protocol Port
20.20 Dynamic Porl Mapping

20.21 RPC Port Mapper Algorithm

20.22 RPC Message Format

20.23 Marshaling Arguments For A Remote Procedure

20.24 Authentication

20.25 An Example Of RPC Message Representation

20.26 An Example OfAn Authentication Field

20.27 Summary

Chapter 21 Distributed Program Generation (Rpcgen Concept)
21.1 Introduction

21.2 Using Remote Procedure Calls

21.3 Programming Mechanisms To Support RPC

21.4 Dividing A Program Inlo Local And Remote Procedures
21.5 Adding Code For RPC

21.6 Stub Procedures

21.7 Mulliple Remote Procedures And Dispatching

21.8 Name Of The Client-Side Slub Procedure

Page 9



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

21.9 Using Rpcgen To Generate Distributed Programs
21.10 Rpcgen Output And Interface Procedures

21.11 Rpcgen Input And Output

21.12 Using Rpcgen To Build A Client And Server
21.13 Summary

Chapter 22 Distributed Program Generation (Rpcgen Example)
22.1 Introduction

22.2 An Example To lllustrate Rpcgen

22.3 Diclionary Look Up

22.4 Eight Steps To A Distributed Application

22.5 Slep 1: Build A Conventional Application Program
22.6 Step 2: Divide The Program Into Two Parts

22.7 Step 3: Create An Rpcgen Specification

22.8 Step 4: Run Rpcgen

22.9 The h File Produced By Rpcgen

22.10 The XDR Conversion File Produced By Rpcgen
22.11 The Client Code Produced By Rpcgen

22.12 The Server Code Produced By Rpcgen

22.13 Step 5: Write Stub Interface Procedures

22.13.1 Client-Side Inlerface Routines

22.13.2 Server-Side Interface Routines

22.14 Step 6: Compile And Link The Client Program
22.15 Slep 7: Compile And Link The Server Program
22.16 Step 8: Start The Server And Execute The Client
22.17 Summarv

Chapter 23 Network File System Concepts (NFS)
23.1 Introduction

23.1 Remote File Access Vs. Transfer

23.3 Operations On Remote Files

23.4 File Access Among Heterogeneous Computers
23.5 Stateless Servers

23.6 NFS And UNIX File Semanlics

23.7 Review Of The UNIX File System

23.7.1 Basic Definitions

23.7.2 A Byte Sequence Without Record Boundaries
23.7.3 AFile 's Owner And Group Identifiers

23.7.4 Protection And Access

23.7.5 The UNIX Open-Read-Write-Close Paradigm
23.7.6 UNIX Data Transfer

23.7.7 Permission To Search A Directory

23.7.8 UNIX Random Access

23.7.9 Seeking Beyond The End Of A UNIX File
23.7.10 UNIX File Position And Concurrent Access
23.7.11 Semantics Of Write During Concurrent Access
23.7.72 UNIX File Names And Paths

23.7.13 The UNIX tnode: Information Stored With A File
23.7.14 The UNIX Stat Operation

Page 10



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

23.7.15 The UNIX File Naming Mechanism
23.7.16 UNIX File System Mounts

23.7.17 UNIX File Name Resolution

23.7.18 UNIX Symbolic Links

23.8 Files Under NFS

23.9 NFS File Types

23.10 NFS File Modes

23.11 NFS File Attributes

23.12 NFS Client And Server

23.13 NFS Client Operation

23.14 NFS Client And UNIX

23.15 NFS Mounts

23.16 File Handle

23.17 NFS Handles Replace Path Names

23.18 An NFS Client Under Windows

23.19 File Positioning With A Stateless Server
23.20 Operations On Directories

23.21 Reading A Directory Slatelessly

23.22 Mulliple Hierarchies In An NFS Server
23.23 The Mount Protocol

23.24 Summary

Chapter 24 Network File System Protocol (NFS, Mount)
24.1 Inlroduction

24.2 Using RPC To Define A Protocol

24.3 Defining A Protocol With Data Structures And Procedures
24.4 NFS Conslanl, Type, And Data Declarations
24.4.1 NFSConstants

24.4.2 NFS Typedef Declarations

24.4.3 NFS Data Structures

24.5 NFS Procedures

24.6 Semantics Of NFS Operations

24.6.1 NFSPROC_NULL (Procedure 0)

24.6.2 NFSPROC_GETA TTR (Procedure 1)
24.6.3 NFSPROC_SETATTR (Procedure 2)
24.6.4 NFSPROC_ROOT (Procedure 3) [Ohsolete in NFS3]
24.6.5 NFSPROC_OOKUP (Procedure 4)
24.6.6 NFSPROC_READLINK (Procedure 5)
24.6.7 NFSPROC_READ (Procedure 6)

24.6.8 NFSPROC_WRITECACHE (Procedure 7) [Obsolele in NFS3]
24.6.9 NFSPROC_WRITE (Procedure 8)
24.6.10 NFSPROC_REATE (Procedure 9)
24.6.11 NFSPROC_REMOVE (Procedure 10)
24.6.12 NFSPROC_RENAME (Procedure 11)
24.6.13 NFSPROC_LINK (Procedure 12)
24.6.14 NFSPROC_SYMUNK (Procedure 13)
24.6.15 NFSPROC_MKDIR (Procedure 14)
24.6.16 NFSPROC_RMDI1R (Procedure 15)

Page 11



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

24.6.17 NFSPROC_READDIR (Procedure 16)
24.6.18 NFSPROC_STATFS (Procedure 17)

24.7 The Mount Protocol

24.7.1 Mount Constant Definitions

24.7.2 Mount Ty'pe Definitions

24.7.3 Mount Data Structures

24.8 Procedures In The Mount Protocol

24.9 Semantics of Mount Operations

24.9.1 MNTPROC _ULL (Procedure 0)

24.9.2 MNTPROC_MNT (Procedure 1)

24.9.3 MNTPROC_DUMP (Procedure 2)

24.9.4 MNTPROC_MNT (Procedure 3)

24.9.5 MNTPROC_UMNTALL (Procedure 4)

24.9.6 MNTPROC_EXPORT (Procedure 5)

24.10 NFS And Moimt Authentication

24.11 Changes In NFS Version 3

24.12 Summarv

Chapter 25 A TELNET Client (Program Structure)
25.1 Introduction

25.2 Overview

25.2.1 The User's Terminal

25.2.2 Command And Control Information

25.2.3 Tenninals, Windows, and Files

25.2.4 The Need For Concurrency

25.2.5 A Thread Model For A TELNET Client

25.3 A TELNET Client Algorithm

25.4 Keyboard 1/0 In Windows

25.5 Global Variables Used For Keyboard Control
25.6 Initializing The Keyboard Thread

25.7 Finite Stale Machine Specification

25.8 Embedding Commands In A TELNET Data Stream
25.9 Option Negotiation

25.10 Request/Offer Symmetry

25.11 TELNET Character Definitions

25.12 A Finite State Machine For Data From The Server
25.13 Transitions Among States

25.14 A Finite State Machine Implementation

25.15 A Compact FSM Representa‘tion

25.16 Keeping The Compact Representation At Run-Time
25.17 Implementation OfA Compact Representation
25.18 Building An FSM Transition Matrix

25.19 The Socket Output Finite State Machine

25.20 Definitions For The Socket Output FSM

25.21 The Option Subnegotiation Finite State Machine
25.22 Definitions For The Option Subnegotiation FSM
25.23 FSM Initialization

25.24 Arguments For The TELNET Client

Page 12



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

25.25 The Heart Of The TELNET Client

25.26 TELNET Synchronization

25.27 Handling A Severe Error

25.28 Implemenlation Of The Main FSM

25.29 A Procedure For Immediate Disconnection

25.30 Abort Procedure

25.31 Summary

Chapter 26 A TELNET Client (Implementation Details)

26.1 Introduction

26.2 The FSM Action Procedures

26.3 Recording The Type Of An Option Requesl

26.4 Performing No Operation

26.5 Responding To WILLWONT For The Echo Oplion
26.6 Sending A Response

26.7 Responding To WILUWONT For Unsupported Options
26.8 Responding To WLLWONT For The No Go-Ahead Option
26.9 Generating DO/DONT For Binary Transmission

26.10 Responding To DO/DONT For Unsupporled Options
26.11 Responding To DO/DONT For Transmit Binary Option
26.12 Responding To DO/DONT For The Terminal Type Option
26.13 Option Subnegoliation

26.14 Sendmg Terminal Type Information

26.15 Tennincning Suhnegotiation

26.16 Sending A Character To The Server

26.17 Displaying Incoming Data On The User's Terminal
26.18 Writing A Block Of Data To The Server

26.19 Interacting With The Local Client

26.20 Responding To lllegat Commands

26.21 Scripting To A File

26.22 Implementation Of Scripting

26.23 Initialzation Of Scripting

26.24 Collecting Characters OfThe Script File Name

26.25 Opening A Script File

26.26 Terminating Scripting

26.27 Printing Status Information

26.28 Summarv

Chapter 27 Porting Servers From UNIX To Windows

27.1 Introduction

27.2 Operating in Background

27.3 Shared Descriptors And Inherilance

27.4 The Controlling TTY

27.5 Working Directories

27.6 File Creattion And Umask

27.7 Process Groups

27.8 Descriptors For Slandard 1/0

27.9 Mutual Exclusion For A Server

27.70 Recording A Process ID

Page 13



0000 0O, tushu007.com
<<TCP/IPOOOOOO>>

27.11 Waiting For A Child Process To Exit

27.12 Using A Syslem Log Facility

27.12.1 Generating Log Messages

27.13 Miscellaneous Incompatibilities

27.14 Summarv

Chapter 28 Deadlock And Starvation In Client-Server Systems
28.1 Introduction

28.2 Definition Of Deadlock

28.3 Difficulty Of Deadlock Detection

28.4 Deadlock Avoidance

28.5 Deadlock Between A Client And Server

28.6 Avoiding Deadlock In A Single Interaction

28.7 Starvalion Among A Set Of Clients And A Server

28.8 Busy Connections And Starvation

28.9 Avoiding Blocking Operations

28.10 Threads, Connections, And Other Limits

28.11 Cycles Of Clients And Servers

28.12 Documenting Dependencies

28.13 Summary

Appendix 1 Functions And Library Routines Used With Sockets
Appendix 2 Manipulation Of Windows Socket Descriptors
Bibliography

Index

Page 14



0000 O, tushu007.com
<TCP/IPOODOOMNOO>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 15



