出版时间:2009-8 出版社:北京大学出版社 作者:伍胜健 页数:294
Tag标签:无
前言
自1995年以来,在姜伯驹院士的主持下,北京大学数学科学学院根据国际数学发展的要求和北京大学数学教育的实际,创造性地贯彻教育部“加强基础,淡化专业,因材施教,分流培养”的办学方针,全面发挥我院学科门类齐全和师资力量雄厚的综合优势,在培养模式的转变、教学计划的修订、教学内容与方法的革新,以及教材建设等方面进行了全方位、大力度的改革,取得了显著的成效。2001年,北京大学数学科学学院的这项改革成果荣获全国教学成果特等奖,在国内外产生很大反响。在本科教育改革方面,我们按照加强基础、淡化专业的要求,对教学各主要环节进行了调整,使数学科学学院的全体学生在数学分析、高等代数、几何学、计算机等主干基础课程上,接受学时充分、强度足够的严格训练;在对学生分流培养阶段,我们在课程内容上坚决贯彻“少而精”的原则,大力压缩后续课程中多年逐步形成的过窄、过深和过繁的教学内容,为新的培养方向、实践性教学环节,以及为培养学生的创新能力所进行的基础科研训练争取到了必要的学时和空间。这样既使学生打下宽广、坚实的基础,又充分照顾到每个人的不同特长、爱好和发展取向。与上述改革相适应,积极而慎重地进行教学计划的修订,适当压缩常微、复变、偏微、实变、微分几何、抽象代数、泛函分析等后续课程的周学时,并增加了数学模型和计算机的相关课程,使学生有更大的选课余地。
内容概要
本书是综合性大学和高等师范院校数学系本科生数学分析课程的教材。全书共分三册。第一册共六章,内容为函数、序列的极限、函数的极限与连续性、导数与微分、导数的应用、不定积分;第二册共六章,内容为定积分、广义积分、数项级数、函数序列与函数项级数、幂级数、傅里叶级数:第三册共五章,内容为n维欧氏空间与多元函数的极限和连续、多元函数微分学、重积分与广义重积分、曲线积分与曲面积分及场论、含参变量的积分。本书每章配有适量习题,书末附有习题答案或提示,供读者参考。 作者多年来在北京大学为本科生讲授数学分析课程,按照教学大纲,精心选取教学内容并对课程体系优化整合,经过几届学生的教学实践,收到了良好的教学效果。本书注重基础知识的讲述和基本能力的训练,按照认知规律,以几何直观、物理背景作为引入数学概念的切入点,对内容讲解简明、透彻,做到重点突出、难点分散,便于学生理解与掌握。 本书可作为高等院校数学院系、应用数学系本科生的教材,对青年教师本书也是一部很好的教学参考书。为了帮助读者学习,本书配有学习辅导书《数学分析解题指南》供读者参考。
作者简介
伍胜健,北京大学数学科学学院教授、博士生导师。1992年在中国科学院数学研究所获博士学位。主要研究方向是复分析。在北京大学长期讲授数学分析、复变函数、复分析等课程。
书籍目录
第一章 函数 1.1 实数 1.1.1 数集 1.1.2 实数系的连续性 1.1.3 有界集与确界 1.1.4 几个常用不等式 1.1.5 常用记号 1.2 函数的概念 1.2.1 函数的定义 1.2.2 由已知函数构造新函数的方法 1.3 函数的性质 1.3.1 函数的有界性 1.3.2 函数的单调性 1.3.3 函数的周期性 1.3.4 函数的奇偶性 1.4 初等函数 习题一第二章 序列的极限 2.1 序列极限的定义 2.1.1 序列 2.1.2 序列极限的定义 2.1.3 无穷小量 2.1.4 无穷大量 2.2 序列极限的性质 2.3 单调收敛原理 2.3.1 单调收敛原理 2.3.2 无理数e和欧拉常数c 2.4 实数系连续性的基本定理 2.4.1 闭区间套定理 2.4.2 有限覆盖定理 2.4.3 聚点原理 2.4.4 柯西收敛准则 2.5 序列的上、下极限 习题二第三章 函数的极限与连续性 3.1 函数的极限 3.1.1 函数极限的定义 3.1.2 函数极限的性质 3.1.3 函数极限概念的推广 3.1.4 序列极限与函数极限的关系 3.1.5 极限存在性定理和两个重要极限 3.2 函数的连续与间断 3.2.1 函数的连续与间断 3.2.2 连续函数的性质 3.2.3 初等函数的连续性 3.3 闭区间上连续函数的基本性质 3.4 无穷小量与无穷大量的阶 习题三第四章 导数与微分 4.1 导数 ……第五章 导数的应用第六章 不定积分部分习题答案与提示名词索引
章节摘录
插图:第一章 函数数学分析主要由微积分和级数理论组成,它所研究的主要对象是实函数,即以实数为自变量并且在实数中取值的函数。因此,在本章中我们首先简要地介绍一下实数系的连续性,然后介绍函数的概念和有关的基本知识。1.1 实数在近几个世纪中科学技术之所以取得了辉煌的成就,在很大程度上是因为数学研究取得了重大进展,其中微积分的创立是现代数学的里程碑。微积分在物理、天文、技术、化学、生物等的研究中显示了强大的威力,解决了许多过去认为高不可攀的困难问题,促进了科学技术的发展。然而,由于在创建初期微积分是以几何直观和物理直觉为依据而进行演绎推理的,因此就形成了方法上有效但逻辑上不能自圆其说的矛盾局面。为了解决微积分在理论上面临的问题,许多著名数学家都投身于微积分理论基础的研究。人们后来发现,微积分的主要理论基础是严格的极限理论。到了19世纪初,柯西(Cauchy)以极限理论为微积分奠定了理论基础。但是柯西构筑的理论大厦起初并不完善,这是因为柯西并没有对实数给出严格的定义。而后来人们又发现,极限理论的某些基本原理依赖于实数系的连续性。为此,本节简要地介绍一下这方面的内容。
编辑推荐
《数学分析(第1册)》是由北京大学出版社出版的。本科生数学基础课教材。
图书封面
图书标签Tags
无
评论、评分、阅读与下载