出版时间:2012-2 出版社:化学工业出版社 作者:何杰 主编 页数:407
前言
物理化学是一门理论性很强的学科。作为化学学科的一个重要分支,物理化学是现代化学的核心内容和理论基础,也是化学与化工类各专业本科生一门重要的主干基础课程。通过物理化学课程的学习,可使学生从理论高度认识大千世界所呈现的化学现象的共同本质,同时,通过物理化学基础知识向专业知识的渗透,可使学生了解基础对专业的重要支撑作用。物理化学蕴含大量的科学方法论和哲学思想。就物理化学课程本身而言,除了让学生学到有关物理化学方面的基本理论和基本技能以外,更重要的是通过这门课的教学,培养学生从实际问题抽象为理论,并运用理论分析和解决实际问题的方法论;物理化学具有很强的逻辑性,可使学生掌握严密的逻辑推理和思维方法,从而增进学生的认知结构和重组水平,得到科学方法的训练。因此,在一些章节内容的小结中我们凸显了相关的科学方法。物理化学还是一门实验性学科。物理化学的一项重要任务就是将离散的实验结果进行定量关联,从而建立有关化学过程的理论和技术方法。因此,对于化学化工类学生,物理化学是一门理论与实际紧密联系的学科。在本教材拓展学习材料中介绍了物理化学在相关学科应用的实例。本教材根据几所学校教师多年的教学实践,以及在编者之间长期的合作与交流基础上,通过集体对物理化学内容的凝练编写而成。由于使用本书的学生可能来自于化学、化工、制药、应用化学、高分子材料、能源、环境科学等不同学科,因此,在内容选择、例题与习题等方面不可能做到面面俱到,只能在拓展内容上做适当兼顾。本书第1、10、11章由合肥学院邓崇海、邵国泉编写;第2、3、7章由安徽理工大学谢慕华、邢宏龙和何杰编写;第4、8章由皖西学院刘传芳、李林刚编写;第5、6章由安徽建筑工业学院赵东林、陈少华和冯绍杰编写;第9章由黄山学院陈国平编写。全书由何杰统稿任主编,邵国泉、刘传芳、刘瑾任副主编。在此,对本文参考文献的作者及在编写过程中给予帮助的同行表示由衷的感谢。由于编者水平有限,书中难免有疏漏和不当之处,恳请读者批评指正。何杰2011年11月于安徽理工大学
内容概要
本书是按照工科物理化学课程教学基本要求,结合多所学校相关专业教师的教学实践经验编写而成。《物理化学》共分11章,包括气体、热力学第一定律、热力学第二定律、多组分系统热力学、化学平衡、相平衡、统计热力学基础、化学反应动力学、电化学、表面现象、胶体分散系统等。《物理化学》在强调基础的同时,注意物理化学原理的应用。各章的小结在总结主要内容的同时,凝练出章节的思想与物理化学方法;在拓展阅读材料中,介绍了物理化学基本理论向相关专业渗透的思路。
书籍目录
绪论
0.1 物理化学研究的内容
0.2 物理化学的研究方法
0.3 物理化学的发展
0.4 物理化学课程的学习方法
第1章 气体的性质
1.1 理想气体
1.1.1 理想气体模型
1.1.2 理想气体状态方程
1.1.3 摩尔气体常数
1.2 理想气体混合物
1.2.1 混合物组成表示法
1.2.2 理想气体混合物的状态方程
1.2.3 道尔顿分压定律
1.2.4 阿马伽分体积定律
1.3 真实气体
1.3.1 真实气体对理想气体的偏离
1.3.2 气体的液化
1.3.3 真实气体状态方程
1.4 对应状态原理及普遍化压缩因子图
1.4.1 压缩因子
1.4.2 对应状态原理与普遍化压缩因子图
[拓展阅读材料]气体定律的应用
本章小结
思考题
习题
第2章 热力学第一定律
2.1 热力学概论
2.1.1 热力学的研究对象
2.1.2 热力学的研究方法
2.2 热力学基本概念
2.2.1 系统与环境
2.2.2 状态与状态函数
2.2.3 热力学平衡态
2.2.4 过程与途径
2.3 热力学第一定律
2.3.1 热和功
2.3.2 热力学能
2.3.3 热力学第一定律的文字表述
2.3.4 封闭系统热力学第一定律的数学表达式
2.4 可逆过程
2.4.1 功与过程
2.4.2 可逆过程与不可逆过程
2.5 恒容热、恒压热及焓
2.5.1 恒容热QV
2.5.2 恒压热Qp与焓
2.6 热容
2.7 热力学第一定律对理想气体的应用
2.7.1 理想气体的热力学能和焓
2.7.2 理想气体Cp,m与CV,m的关系
2.7.3 理想气体的绝热可逆过程
2.8 热力学第一定律对实际气体的应用
2.8.1 节流膨胀及其特点
2.8.2 焦耳?汤姆逊系数及其应用
2.8.3 实际气体恒温过程中的ΔH和ΔU的计算
2.9 相变焓
2.9.1 相与相变
2.9.2 相变焓及其计算
2.9.3 相变焓与温度的关系
2.9.4 非平衡相变(非平衡压力或非平衡温度下)
2.10 化学反应热
2.10.1 化学反应进度
2.10.2 化学反应热
2.10.3 物质的标准态及标准摩尔反应焓
2.10.4 标准摩尔反应焓的计算
2.10.5 反应热的测量
2.10.6 标准摩尔反应焓与温度的关系
2.10.7 非等温反应过程热的计算
[拓展阅读材料]储能技术与储能材料
本章小结
思考题
习题
第3章 热力学第二定律
3.1 自发过程的共同特征
3.1.1 自发过程
3.1.2 自发过程的实质
3.2 热力学第二定律
3.3 卡诺循环和卡诺定理
3.3.1 热机效率
3.3.2 卡诺循环
3.3.3 卡诺热机效率
3.3.4 卡诺定理及推论
3.4 熵的概念、克劳修斯不等式和熵增原理
3.4.1 熵的导出
3.4.2 克劳修斯不等式
3.4.3 熵增原理、熵判据
3.5 熵变的计算与应用
3.5.1 环境的熵变
3.5.2 单纯p、V、T变化过程熵变的计算
3.5.3 相变化过程的熵变的计算
3.6 熵的物理意义和规定熵
3.6.1 熵的物理意义
3.6.2 热力学第三定律
3.6.3 摩尔规定熵和标准摩尔熵
3.6.4 化学变化过程熵变的计算
3.7 亥姆霍兹函数与吉布斯函数
3.7.1 亥姆霍兹函数
3.7.2 吉布斯函数
3.7.3 ΔA及ΔG的计算
3.8 热力学基本方程
3.8.1 热力学基本方程
3.8.2 麦克斯韦关系式
3.8.3 吉布斯?亥姆霍兹方程
[拓展阅读材料]节能减排
本章小结
思考题
习题
第4章 多组分系统热力学
4.1 偏摩尔量
4.1.1 偏摩尔量的定义
4.1.2 偏摩尔量的集合公式
4.1.3 吉布斯?杜亥姆(Gibbs?Duhem)方程
4.1.4 不同偏摩尔量之间的关系
4.1.5 偏摩尔量的实验测定
4.2 化学势
4.2.1 化学势及其物理意义
4.2.2 多组分均相系统的热力学基本公式
4.2.3 化学势与温度和压力的关系
4.3 气体物质的化学势
4.3.1 理想气体的化学势
4.3.2 实际气体物质的化学势
4.4 稀溶液中的两个经验定律
4.4.1 拉乌尔定律(Raoult’s Law)
4.4.2 亨利定律(Henry’s Law)
4.4.3 Raoult定律和Henry定律的比较
4.5 理想液态混合物及各组分的化学势
4.5.1 理想液态混合物的定义
4.5.2 理想液体混合物中各组分的化学势
4.5.3 理想液态混合物的通性
4.6 理想稀溶液及各组分的化学势
4.6.1 理想稀溶液的定义
4.6.2 理想稀溶液中各组分的化学势
4.6.3 理想稀溶液的依数性及其应用
4.7 实际溶液及各组分的化学势
4.7.1 实际溶液对理想模型的偏差
4.7.2 非理想液态混合物及化学势
4.7.3 非理想稀溶液及化学势
4.7.4 活度因子的测定与计算
[拓展阅读材料]Duhem?Margule(杜亥姆?马居尔)公式及应用
本章小结
思考题
习题
第5章 化学平衡
5.1 化学反应的平衡条件和化学反应亲和势
5.2 化学反应的平衡常数和等温方程式
5.2.1 气相反应的平衡常数——化学反应的等温方程式
5.2.2 溶液中反应的平衡常数
5.2.3 气相反应的经验平衡常数
5.3 标准摩尔生成吉布斯函数与平衡常数的计算
5.3.1 标准状态下的反应吉布斯函数
5.3.2 标准摩尔生成Gibbs函数
5.3.3 标准平衡常数与化学反应计量方程式的关系
5.4 复相化学平衡
5.5 化学反应平衡系统的计算
5.5.1 平衡常数的应用
5.5.2 平衡混合物组成计算
5.6 各种因素对化学平衡的影响
5.6.1 温度对化学平衡的影响——化学反应的等压方程
5.6.2 压力对化学平衡的影响
5.6.3 惰性组分气体对化学平衡的影响
5.6.4 物料配比对平衡组成的影响
5.7 同时平衡、反应耦合、近似计算
5.7.1 同时平衡
5.7.2 反应耦合
5.7.3 近似计算
[拓展阅读材料]生化反应的耦合
本章小结
思考题
习题
第6章 相平衡
6.1 相律
6.1.1 相律的基本概念
6.1.2 吉布斯相律的推导
6.1.3 吉布斯相律的局限性与应用
6.2 单组分系统的相图
6.2.1 单组分系统的相律及其相图特征
6.2.2 克拉贝龙方程和克拉贝龙?克劳修斯方程
6.2.3 典型的单组分系统相图
6.2.4 单组分系统相变的特征与类型
6.3 二组分液态混合物的气?液平衡相图
6.3.1 二组分理想液态混合物系统气?液平衡相图
6.3.2 二组分理想液态混合物的气?液平衡相图的应用
6.3.3 杠杆规则及其应用
6.3.4 二组分非理想液态混合物的气?液平衡相图
6.4 部分互溶和完全不互溶双液系统相图
6.4.1 部分互溶双液系统相图
6.4.2 完全不互溶双液系统相图
6.5 二组分固?液平衡系统相图
6.5.1 相图与步冷曲线的绘制
6.5.2 固相完全互溶系统相图
6.5.3 固相部分互溶系统相图
6.5.4 固相完全不溶系统相图
6.5.5 生成化合物系统相图
6.5.6 二组分系统T?x相图的共同特征
6.6 三组分系统相图
6.6.1 三角坐标表示法
6.6.2 部分互溶三液系统相图
6.6.3 部分互溶三液系统相图的应用
6.6.4 盐水三组分体系的固?液相图
[拓展阅读材料]超临界系统与超临界
萃取
本章小结
思考题
习题
第7章 统计热力学基础
7.1 概述
7.1.1 统计热力学研究的对象与任务
7.1.2 统计热力学研究方法
7.1.3 统计热力学方法的特点
7.1.4 统计系统的分类
7.1.5 统计热力学的基本假设
7.1.6 最概然分布与平衡分布
7.2 玻尔兹曼分布律与粒子配分函数
7.2.1 玻尔兹曼分布律
7.2.2 粒子配分函数 q
7.2.3 粒子配分函数的计算
7.3 配分函数和热力学性质的关系
7.4 统计热力学应用——气体
7.4.1 单原子气体
7.4.2 双原子及线型多原子气体
7.5 统计热力学应用——理想气体反应的平衡常数
7.5.1 平衡常数的配分函数表达式
7.5.2 标准摩尔Gibbs函数和标准
摩尔焓函数
[拓展阅读材料]系综原理简介
本章小结
思考题
习题
第8章 化学反应动力学
8.1 化学动力学的基本概念
8.1.1 反应速率
8.1.2 反应速率的测定
8.1.3 基元反应
8.1.4 质量作用定律
8.1.5 反应级数和速率系数
8.2 具有简单级数反应的特点
8.2.1 一级反应
8.2.2 二级反应
8.2.3 n级反应
8.2.4 反应级数的测定和速率方程的确立
8.3 温度对反应速率的影响
8.3.1 范霍夫近似规律
8.3.2 阿伦尼乌斯公式
8.3.3 活化能
8.4 几种典型的复杂反应
8.4.1 对峙反应
8.4.2 平行反应
8.4.3 连串反应
8.4.4 复杂反应速率方程的近似处理方法
8.4.5 链反应
8.5 反应速率理论简介
8.5.1 碰撞理论
8.5.2 过渡态理论
8.5.3 单分子反应理论
8.5.4 反应速率理论的发展——分子反应动态学简介
8.6 溶液中的反应动力学简介
8.7 催化反应动力学
8.7.1 催化与催化作用
8.7.2 均相催化反应
8.7.3 多相催化反应动力学
8.8 光化学反应
8.8.1 光化学基本定律
8.8.2 量子产率
8.8.3 光化学反应动力学
8.8.4 光化学反应平衡
[拓展阅读材料]光催化反应与环境污染
治理
本章小结
思考题
习题
第9章 电化学
9.1 电解质溶液导论
9.1.1 电解质溶液导电机理及法拉第定律
9.1.2 离子的电迁移与迁移数
9.1.3 电导、电导率和摩尔电导率
9.1.4 电解质溶液的活度
9.1.5 强电解质溶液理论简介
9.2 可逆电池的构成及其电动势测定
9.3 可逆电池的热力学
9.3.1 Nernst方程
9.3.2 电池反应有关热力学量的关系
9.3.3 电极电势和液体接界电势
9.3.4 电动势测定的应用
9.4 原电池的设计与应用
9.4.1 氧化还原反应
9.4.2 扩散过程——浓差电池
9.4.3 中和反应与沉淀反应
9.4.4 化学电源
9.5 电极过程
9.6 电解的实际应用
9.6.1 金属的析出
9.6.2 金属的电化学腐蚀和防腐
[拓展阅读材料]电化学在洁净环境中的应用
本章小结
思考题
习题
第10章 表面现象
10.1 界面及界面特性
10.1.1 表面与界面
10.1.2 比表面积
10.2 表面吉布斯函数与表面张力
10.2.1 表面功、表面吉布斯函数及表面张力
10.2.2 表面热力学基本方程
10.2.3 表面张力与温度的关系
10.3 润湿现象
10.3.1 润湿角与杨氏方程
10.3.2 铺展
10.4 弯曲液面的表面现象
10.4.1 弯曲液面下的附加压力
10.4.2 附加压力的大小——Yang?Laplace方程
10.4.3 毛细管现象
10.4.4 弯曲液面下附加压力的应用
10.5 弯液面上的蒸气压
10.5.1 开尔文(Kelvin)方程
10.5.2 弯液面上蒸气压的应用——亚稳状态和新相的生成
10.6 溶液的表面吸附
10.6.1 溶液的表面吸附现象
10.6.2 表面吸附量
10.6.3 Gibbs吸附公式
10.7 表面活性剂及其作用
10.7.1 表面活性剂的结构
10.7.2 表面活性剂的分类
10.7.3 表面活性剂在溶液体相与表面层的分布
10.7.4 表面活性剂的实际应用
10.7.5 表面活性剂的研究及展望
10.8 固体表面的吸附
10.8.1 物理吸附和化学吸附
10.8.2 经验吸附等温式
10.8.3 Langmuir吸附等温式
10.8.4 多分子层吸附等温式
[拓展阅读材料]煤炭加工利用中的
表面物理化学
本章小结
思考题
习题
第11章 胶体分散系统
11.1 胶体分散系统概述
11.1.1 分散系统及其分类
11.1.2 胶体分散系统的制备与净化
11.2 溶胶的动力和光学性质
11.2.1 溶胶的动力性质
11.2.2 溶胶的光学性质
11.3 溶胶的电学性质
11.3.1 胶体粒子的表面电荷
11.3.2 双电层理论与胶团结构
11.3.3 溶胶的电动现象
11.4 溶胶的稳定性和聚沉作用
11.5 大分子溶液
11.5.1 大分子化合物及其溶液
11.5.2 唐南平衡
11.6 凝胶
11.6.1 凝胶
11.6.2 凝胶的分类
11.6.3 凝胶的制备
11.6.4 凝胶的性质
11.6.5 凝胶的应用
11.7 乳状液和微乳液
11.7.1 乳状液
11.7.2 微乳液
11.8 其他粗分散系统
11.8.1 泡沫
11.8.2 悬浮液
11.8.3 气溶胶
[拓展阅读材料]大气气溶胶及其环境
影响
本章小结
思考题
习题
附录
附录1 SI单位及常用基本常数
附录2 能量单位间的换算
附录3 物质B的S?m和ΔfG?m在不同标准状态之间的换算因数
附录4 元素的相对原子质量表(年)
附录5 某些物质的临界参数
附录6 某些气体的范德华常数
附录7 某些气体的摩尔定压热容与温度的关系(Cp,m=a+bT+cT)
附录8 某些物质的标准摩尔生成焓、标准摩尔生成吉布斯函数、标准摩尔熵及摩尔定压热容(Cp,m=kPa,℃)
附录9 某些有机化合物标准摩尔燃烧焓(p?=kPa,℃)
参考文献
章节摘录
版权页: 插图: 10.8固体表面的吸附 固体表面分子因受力不同于内部分子而具有表面Gibbs函数和表面张力,且固体因结构所限,分子不能自由移动,表面分子所处的环境也不完全相同,有的处于棱、角或晶格缺陷上,这些分子受力更不均匀。存在不饱和力场的表面会自发地吸附气体或液体分子以降低自身的表面能,这种现象就称为固体对气体或液体的吸附(adsorption)。被吸附的气体或液体称为吸附质(adsorbate),具有吸附作用的固体称为吸附剂(adsorbent)。常用的吸附剂有活性炭、硅胶、分子筛等。这些吸附剂具有比表面积大、吸附能力强等特点。 10.8.1物理吸附和化学吸附 根据吸附剂表面与被吸附物之间作用力的不同,吸附可分为物理吸附与化学吸附。 物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,即范德华力(van der Waals)。当固体表面分子与气体或液体分子间的引力大于气体或液体内部分子间的引力时,气体或液体的分子就被吸附在固体表面上。这些吸附在固体表面的分子由于分子运动,也会从固体表面脱离而进入气体(或液体)中去,其本身不发生任何化学变化。随着温度的升高,气体(或液体)分子的动能增加,分子就不易滞留在固体表面上,而越来越多地逸人气体(或液体)中去,即所谓“脱附”。这种吸附一脱附的可逆现象在物理吸附中均存在。工业上就利用这种现象,借改变操作条件,使吸附的物质脱附,达到使吸附剂再生,回收被吸附物质而达到分离的目的。 化学吸附是固体表面与被吸附物间的化学键力起作用的结果,两者之间发生电子重排并形成离子型、共价型、自由基型或络合型等新的化学键。该类型的吸附需要一定的活化能,故又称“活化吸附”。这种化学键亲和力的大小可以差别很大,但它大大超过物理吸附的范德华力。化学吸附放出的吸附热达到化学反应热的数量级。而物理吸附放出的吸附热通常与气体的液化热相近。化学吸附往往是不可逆的,且脱附后的物质常发生了化学变化,不再是原有的性状,故其过程是不可逆的。 由于化学吸附相当于吸附剂表面分子与吸附质分子发生了化学反应,在红外、紫外一可见光谱中会出现新的特征吸收带。 物理吸附和化学吸附过程如图10—24所示。物理吸附与化学吸附的主要区别见表10—6。
编辑推荐
《高等学校"十二五"规划教材:物理化学》适合作为工科各类专业以及理科应用化学专业本科生物理化学课程教材,也可供广大化学工作者参考。
图书封面
评论、评分、阅读与下载