0000 O, tushu007.com

<C++0 U0 0ugugoggggs>>

gobooo

O00O<<C++000D000O0DOO0ODOO>>

1300 ISBNLI O [0 9787118086034

1000 ISBNU U 1J 7118086037

0oooo2013-2

00000000000 DO0Db0obO U000 O0obOobOooOg (2013-0200)

gobobobbboooogogopbrO00O0O0nobbObOO0oooonbDODn

00000000 http://www.tushu007.com

Page 1



0000 O, tushu007.com

<C++0 U0 0ugugoggggs>>

goon

gooooobo"oo"mbog e+ bbobbooooooobbobobooo
gobbobobboooooon
gbhooboboobodbboboboobbooboobbooboobbooboooce++oo
goon
gobboobbbuodgoguobobobbuodoodobobobobooooooobobboougya
gobboobbboogogobbobbidoodobobobboooooobobobbooga
goboboobbuooooooboboobo
goboboobosugomouoo:c++bboogoooboobboosguooooubooboood
goboboobbooooc~uoooobuooooooobobbbooooooobooobobooaoa
gc++onbouoooooobooon

Page 2



0000 0O, tushu007.com

<C++UUUpoupouougogggs>>

good

Chapter 1 Introduction 1.1 Overview of Programming 1.1.1 What Is Programming? 1.1.2 How Do We Write a
Program? 1.2 The Evolution of Programming Language 1.2.1 Assembly and Machine Languages 1.2.2 Early
Languages 1.2.3 Later-Generation Languages 1.2.4 Modern Languages 1.3 Programming Methodologies 1.3.1
Structured Programming 1.3.2 Object-Oriented Programming 1.4 Object-Oriented Programming 1.5 C++
Programming Language 1.5.1 History ofC and C++ 1.5.2 Learning C++ Word Tips Exercises Chapter 2 Basic
Facilities 2.1 C++ Program Structure 2.2 Input / Output Streams 2.3 Constant 2.4 Functions 2.4.1 Function
Declarations 2.4.2 Function Definitions 2.4.3 Default Parameters 2.4.4 Inline Functions 2.4.5 Overloaded
Functions 2.5 References 2.5.1 Reference Definition 2.5.2 Reference Variables as Parameters 2.5.3 References as
Value-Returning 2.5.4 References as Left-Hand Values 2.6 Namespaces Word Tips Exercises Chapter 3 Classes
and Objects ([J ) 3.1 Structures 3.1.1 Defining a Structure 3.1.2 Accessing Members of Structures 3.1.3 Structures
with Member Functions 3.2 Data Abstraction and Classes 3.2.1 Data Abstraction 3.2.2 Defining Classes 3.2.3
Defining Objects 3.2.4 Using Member Functions 3.2.5 In-Class Member Function Definition 3.2.6 File Structure of
an Abstract Data Type 3.3 Information Hiding 3.4 Access Control 3.5 Constructors 3.5.1 Overloading
Constructors 3.5.2 Constructors with Default Parameters 3.6 Destructors 3.6.1 Definition of Destructors 3.6.2
Order of Constructor and Destructor Calls Word Tips Exercises Chapter 4 Classes and Objects ([J ) 4.1 Constant
Members 4.2 this Pointers 4.3 Static Members 4.4 Free Store 4.5 Objects as Members of A Class 4.6 Copy Members
4.6.1 Definition of Copy Constructors 4.6.2 Shallow Copy and Deep Copy 4.7 Arrays of Objects 4.8 Friends 4.8.1
Friend Functions 4.8.2 Friend Classes 4.9 Examples of User-Defined Types Word Tips Exercises Chapter 5
Operator Overloading 5.1 Why Operator Overloading Is Need 5.2 Operator Functions 5.2.1 Overloaded
Operators 5.2.2 Operator Functions 5.3 Binary and Unary Operators 5.3.1 Overloading Binary Operators 5.3.2
Overloading Unary Operators 5.4 Overloading Combinatorial Operators 5.5 Mixed Arithmetic of User-Defined
Types 5.6 Type Conversion of User-Defined Types 5.7 Examples of Operator Overloading 5.7.1 A Complex
Number Class 5.7.2 A String Class Word Tips Exercises Chapter 6 Inheritance 6.1 Class Hierarchies 6.2 Derived
Classes 6.2.1 Declaration of Derived Classes 6.2.2 Structure of Derived Classes 6.3 Constructors and Destructors of
Derived Classes 6.3.1 Constructors of Derived Classes 6.3.2 Destructors of Derived Classes 6.3.3 Order of Calling
Class Objects 6.3.4 Inheritance and Composition 6.4 Member Functions of Derived Classes 6.5 Access Control
6.5.1 Access Control in A Class 6.5.2 Access to Base Classes 6.6 Multiple Inheritance 6.6.1 Declaration of Multiple
Inheritance 6.6.2 Constructors of Multiple Inheritance 6.7 Virtual Inheritance 6.7.1 Multiple Inheritance
Ambiguities 6.7.2 Trying to Solve Inheritance Ambiguities 6.7.3 Virtual Base Classes 6.7.4 Constructing Objects of
Multiple Inheritance Word Tips Exercises Chapter 7 Polymorphism and Virtual Functions 7.1 Polymorphism
7.1.1 Concept of Polymorphism 7.1.2 Binding 7.2 Virtual Functions 7.2.1 Definition of Vitual Functions 7.2.2
Extensibility 7.2.3 Principle of Virtual Functions 7.2.4 Virtual Destructors 7.2.5 Function Overloading and
Function Overriding 7.3 Abstract Base Classes Word Tips Exercises Chapter 8 Templates 8.1 Templates
Mechanism 8.2 Function Templates and Template Functions 8.2.1 Why We Use Function Templates? 8.2.2
Definition of Function Templates 8.2.3 Function Template Instantiation 8.2.4 Function Template with Different
Parameter Types 8.2.5 Function Template Overloading 8.3 Class Templates and Template Classes 8.3.1 Definition
of Class Templates 8.3.2 Class Template Instantiation 8.4 Non-Type Parameters for Templates 8.5 Derivation and
Class Templates Word Tips Exercises References

Page 3



0000 0O, tushu007.com

<C++UUUpoupouougogggs>>

good

0000 OO0 Chapter6 Inheritance Do not multiply objects without necessity. --W.Occam Objectives To
create classes by inheriting from existing classes The use of constructors and destructors in inheritance hierarchies
Access control in the class and the differences between public,protected and private inheritance To understand
multiple inheritance To avoid ambiguities with multiple inheritance To avoid ambiguities with virtual inheritance
6.1 Class Hierarchies In the previous chapters,we discuss how to build a single class that is a representation of real
objects.The class is represented by a collection of abstracted concepts with common characteristics.However,a
concept does not exist in isolation always. It coexists with related concepts and derives much of its power from
relationships with related concepts. It is a fundamental aspect of human intelligence to seek out,recognize,and
create relationships among concepts. For example,the concepts of a circle,a triangle and a rectangle are related in
that they are both shapes; that is,they have the concept of a shape in common,that is,they have the operations of
move,draw and calculation.However,we find their difference points of the circle,triangle and rectangle. Thus,we
must explicitly define classes Circle, Triangle and Rectangle to have class Shape in common.Representing a circle,a
triangle and a rectangle in a program without involving the notion of a shape would be to lose something
essential.Each kind of shape is more specialized than its parent Shape? We can classify different kind of shape
according to hierarchy shown in Figure 6-1.This could be represented in the world of classes with a class Shape
from which we would derive the three other ones:Circle, Triangle and Rectangle.

Page 4



0000 O, tushu007.com

<C++0 U0 0ugugoggggs>>

goon

gooooobo"oo"mbog e+ bbobbooooooobbobobooo
gobbobbbuoogooobbbobbuoooogobbobbooooooobobbooog
goobooooo
goooooo"ooo"mbooo:c++0oooogoobbobbooooooobbobbooo
gobboobbbuodgoguobobobbuodoodobobobobooooooobobboougya
gooooooo

Page 5



0000 O, tushu007.com

<C++0 U0 0ugugoggggs>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 6



