线性代数

出版时间:2012-8  出版社:国防工业出版社  作者:铁军,崔艳英,沈利英 主编  页数:171  字数:253000  

内容概要

《线性代数》由铁军、崔艳英、沈利英主编,根据教育部最新制定的“
本科数学基础课程(线性代数)教学基本要求”,并参考最新的全国硕士研究生入学统一考试数学考试大纲编写而成,全书贯穿我国著名教育家林炎志先生提出的“四线四点”即“哲学线、历史线、逻辑线、价值线和记忆点、理解点、实用点、工艺点”的教育思想。主要内容有行列式、矩阵、向量组的线性相关性、线性方程组、相似矩阵与二次型、线性空间与线性变换等6章。各章后均附有适量的习题。《线性代数》难易适度,结构严谨,重点突出,理论联系实际,有利于提高本科生解题能力;特别注重学生对基础理论的掌握和思想方法的学习,以及对他们的抽象思维能力、逻辑推理能力、空间想象能力和自学能力的培养;同时每一章均为学生从“四线四点”的角度撰写课程论文预留了空间,有利于培养学生初步的科学研究的能力。
《线性代数》可作为高等院校理工类、经管类专业本科生的线性代数教材,也可作为学生参加全国硕士研究生入学统一考试的数学复习参考用书。

书籍目录

第1章  行列式
1.1 二阶与三阶行列式
1.1.1 元线性方程组与二阶行列式
1.1.2 三元线性方程组与三阶行列式
1.2 排列
1.3 n阶行列式的定义
1.3.1 n阶行列式的定义
1.3.2 几类特殊的行列式
1.4 行列式的性质
1.5 行列式按行(列)展开
1.6 克莱姆法则
1.6.1 非齐次线性方程组
1.6.2 齐次线性方程组
1.7 行列式的几何应用
1.7.1 阶行列式的几何解释
1.7.2 三阶行列式的几何解释
1.7.3 行列式的若干几何应用
习题
第2章 矩阵
2.1 矩阵的概念
2.1.1 矩阵的概念
2.1.2 特殊矩阵
2.2 矩阵的运算
2.2.1 矩阵的加法
2.2.2 矩阵的数乘
2.2.3 矩阵的乘法
2.2.4 转置矩阵
2.2.5 共轭矩阵
2.2.6 方阵的行列式
2.3 逆矩阵
2.3.1 逆矩阵的概念
2.3.2 伴随矩阵
2.4 分块矩阵
2.4.1 分块矩阵的概念
2.4.2 分块矩阵的加法
2.4.3 分块矩阵的数乘
2.4.4 分块矩阵的乘法
2.4.5 分块对角矩阵的逆矩阵
2.4.6 分块矩阵的转置
2.4.7 对角矩阵和反对称矩阵
2.4.8 分块矩阵的共轭
2.5 矩阵的初等变换
2.5.1 矩阵的秩
2.5.2 初等变换与初等矩阵
2.5.3 初等变换与逆矩阵
2.5.4 初等变换与矩阵的秩
习题
第3章 向量组的线性相关性
3.1 n维向量及其线性运算
3.1.1 n维向量的概念
3.1.2 n维向量的线性运算
3.2 向量组的线性相关性
3.2.1 向量组与线性组合
3.2.2 向量组的线性相关性
3.2.3 向量组的线性相关性的判断及其性质
3.3 向量组的秩
3.3.1 向量组的最大无关组
3.3.2 向量组的秩
3.3.3 向量组的秩与矩阵的秩的关系
3.4 向量空间
3.4.1 向量空间概述
3.4.2 子空间
3.4.3 向量空间的基与维数
3.4.4 向量在给定基下的坐标
3.5 应用实例
习题
第4章 线性方程组
4.1 用消元法解线性方程组
4.2 线性方程组有解的判别定理
4.3 线性方程组解的结构
4.3.1 齐次线性方程组的解的结构
4.3.2 非齐次线性方程组的解的结构
4.4 线性方程组的应用
4.4.1 网络流模型
4.4.2 人口迁移模型
4.4.3 电网模型
4.4.4 经济系统的平衡
4.4.5 配平化学方程式
习题
第5章 相似矩阵与二次型
5.1 向量的内积、长度及正交性
5.1.1 向量的内积
5.1.2 正交向量组
5.1.3 线性无关向量组的正交化方法
5.1.4 正交阵
5.2 方阵的特征值和特征向量
5.2.1 特征值和特征向量的概念
5.3.2 特征值和特征向量的性质
5.3 相似矩阵
5.3.1 相似矩阵
5.3.2 矩阵可与对角阵相似的条件
5.4 对称阵的对角化
5.4.1 对称阵的特征值和特征向量
5.4.2 对称阵的相似对角化
5.5 二次型及其标准型
5.5.1 二次型及其矩阵表示式
5.5.2 用正交变换化二次型为标准形
5.6 正定二次型
5.7 若干应用问题
5.7.1 离散动态系统模型
5.7.2 矩阵对角化在分析中的应用
5.7.3 正定矩阵的应用
习题
第6章 线性空间与线性变换
6.1 线性空间的定义与性质
6.1.1 线性空间的定义
6.1.2 线性空间的性质
6.2 维数、基与坐标
6.2.1 基与维数定义
6.2.2 坐标的定义
6.2.3 线性空间的同构
6.3 基变换与坐标变换
6.3.1 基变换公式与过渡矩阵
6.3.2 坐标变换公式
6.4 线性变换
6.4.1 映射
6.4.2 从线性空间vn到um的线性变换
6.4.3 线性变换的性质
6.5 线性变换的矩阵表示式
6.5.1 线性变换的标准矩阵
6.5.2 线性变换在给定基下的矩阵
6.5.3 线性变换与其矩阵的关系
6.5.4 线性变换在不同基下的矩阵
习题
参考文献

章节摘录

版权页:   插图:   4.4线性方程组的应用 本节中的数学模型都是线性的,即每个模型都用线性方程组来表示,通常写成向量或矩阵的形式。由于自然现象通常都是线性的,或者当变量取值在合理范围内时近似于线性,因此线性模型的研究非常重要。此外,线性模型比复杂的非线性模型更易于用计算机进行计算。 4.4.1网络流模型 网络流模型广泛应用于交通、运输、通信、电力分配、城市规划、任务分派以及计算机辅助设计等众多领域。当科学家、工程师和经济学家研究某种网络中的流量问题时,线性方程组就自然产生了,如城市规划设计人员和交通工程师监控城市道路网格内的交通流量、电气工程师计算电路中流经的电流、经济学家分析产品通过批发商和零售商网络从生产者到消费者的分配等。大多数网络流模型中的方程组都包含了数百甚至上千未知量和线性方程。 一个网络由一个点集以及连接部分或全部点的直线或弧线构成。网络中的点称作连接点(或节点),网络中的连接线称作分支。每一分支中的流量方向已经指定,并且流量(或流速)已知或者已标为变量。 网络流的基本假设是网络中流人与流出的总量相等,并且每个连接点流入和流出的总量也相等。例如,图4—1分别说明了的流量从一个或两个分支流入连接点,x1,x2和x3分别表示从其他分支流出的流量,x4和x5表示从其他分支流入的流量。因为流量在每个连接点守恒,所以有x1+x2=60和x4+x5=x3+80。在类似的网络模式中,每个连接点的流量都可以用一个线性方程来表示。网络分析要解决的问题就是:在部分信息(如网络的输入量)已知的情况下,确定每一分支中的流量。 例4—11 图4—2中的网络给出了在下午一两点钟,某市区部分单行道的交通流量(以每刻钟通过的汽车数量来度量)。试确定网络的流量模式。 解 根据网络流模型的基本假设,在节点(交叉口)A,B,C,D处,可以分别得到下列方程: 此外,该网络的总流入(20+30+50)等于网络的总流出(30+x3+40+10),化简得x3=20。把这个方程与整理后的前四个方程联立,得如下方程组: 网络分支中的负流量表示与模型中指定的方向相反。由于街道是单行道,因此变量不能取负值。这导致变量在取正值时也有一定的局限。

编辑推荐

《普通高等院校"十二五"规划教材:线性代数》可作为高等院校理工类、经管类专业本科生的线性代数教材,也可作为学生 参加全国硕士研究生入学统一考试的数学复习参考用书。

图书封面

评论、评分、阅读与下载


    线性代数 PDF格式下载


用户评论 (总计0条)

 
 

 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7