概率论基础教程

出版时间:2007-9  出版社:人民邮电  作者:罗斯  页数:565  字数:692000  
Tag标签:无  

内容概要

本书是全球高校广泛采用的概率论教材,通过大量的例子讲述了概率论的基础知识,主要内容有组合分析、概率论公理化、条件概率和独立性、离散和连续型随机变量、随机变量的联合分布、期望的性质、极限定理等。本书附有大量的练习,分为习题、理论习题和自检习题三大类,其中自检习题部分还给出全部解答。  本书作为概率论的入门书,适用于大专院校数学、统计、工程和相关专业(包括计算科学、生物、社会科学和管理科学)的学生阅读,也可供概率应用工作者参考。

作者简介

Sheldon M.Ross,国际知名概率与统计学家,南加州大学工业工程与运筹系系主任。毕业于斯坦福大学统计系,曾在加州大学伯克利分校任教多年。研究领域包括:随机模型、仿真模拟、统计分析、金融数学等。Ross教授著述颇丰,他的多种畅销数学和统计教材均产生了世界性的影响,如S

书籍目录

1 Combinatorial Analysis  1.1 Introduction  1.2 The Basic Principle of Counting  1.3 Permutations  1.4 Combinations  1.5 Multinomial Coefficients  1.6 The Number of Integer Solutions of Equations*   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 2 Axioms of Probability  2.1 Introduction  2.2 Sample Space and Events  2.3 Axioms of Probability  2.4 Some Simple Propositions  2.5 Sample Spaces Having Equally Likely Outcomes  2.6 Probability as a Continuous Set Function*  2.7 Probability as a Measure of Belief   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 3 Conditional Probability and Independence  3.1 Introduction  3.2 Conditional Probabilities  3.3 Bayes' Formula  3.4 Independent Events  3.5 P(.|F) Is a Probability   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 4 Random Variables  4.1 Random Variables  4.2 Discrete Random Variables  4.3 Expected Value  4.4 Expectation of a Function of a Random Variable  4.5 Variance  4.6 The Bernoulli and Binomial Random Variables   4.6.1 Properties of Binomial Random Variables   4.6.2 Computing the Binomial Distribution Function  4.7 The Poisson Random Variable   4.7.1 Computing the Poisson Distribution Function  4.8 Other Discrete Probability Distributions   4.8.1 The Geometric Random Variable   4.8.2 The Negative Binomial Random Variable   4.8.3 The Hypergeometric Random Variable   4.8.4 The Zeta (or Zipf) Distribution  4.9 Properties of the Cumulative Distribution Function   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 5 Continuous Random Variables  5.1 Introduction  5.2 Expectation and Variance of Continuous Random Variables  5.3 The Uniform Random Variable  5.4 Normal Random Variables   5.4.1 The Normal Approximation to the Binomial Distribution  5.5 Exponential Random Variables   5.5.1 Hazard Rate Functions  5.6 Other Continuous Distributions   5.6.1 The Gamma Distribution   5.6.2 The Weibull Distribution   5.6.3 The Cauchy Distribution   5.6.4 The Beta Distribution  5.7 The Distribution of a Function of a Random Variable   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 6 Jointly Distributed Random Variables  6.1 Joint Distribution Functions  6.2 Independent Random Variables  6.3 Sums of Independent Random Variables  6.4 Conditional Distributions: Discrete Case  6.5 Conditional Distributions: Continuous Case  6.6 Order Statistics*  6.7 Joint Probability Distribution of Functions of Random Variables  6.8 Exchangeable Random Variables*   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 7 Properties of Expectation  7.1 Introduction  7.2 Expectation of Sums of Random Variables   7.2.1 Obtaining Bounds from Expectations via the Probabilistic Method*   7.2.2 The Maximum-Minimums Identity*  7.3 Moments of the Number of Events that Occur  7.4 Covariance, Variance of Sums, and Correlations  7.5 Conditional Expectation   7.5.1 Definitions   7.5.2 Computing Expectations by Conditioning   7.5.3 Computing Probabilities by Conditioning   7.5.4 Conditional Variance  7.6 Conditional Expectation and Prediction  7.7 Moment Generating Functions   7.7.1 Joint Moment Generating Functions  7.8 Additional Properties of Normal Random Variables   7.8.1 The Multivariate Normal Distribution   7.8.2 The Joint Distribution of the Sample Mean and Sample Variance  7.9 General Definition of Expectation   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 8 Limit Theorems  8.1 Introduction  8.2 Chebyshev's Inequality and the Weak Law of Large Numbers  8.3 The Central Limit Theorem  8.4 The Strong Law of Large Numbers  8.5 Other Inequalities  8.6 Bounding The Error Probability   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 9 Additional Topics in Probability  9.1 The Poisson Process  9.2 Markov Chains  9.3 Surprise, Uncertainty, and Entropy  9.4 Coding Theory and Entropy   Summary   Theoretical Exercises   Self-Test Problems and Exercises 10 Simulation  10.1 Introduction  10.2 General Techniques for Simulating Continuous Random Variables   10.2.1 The Inverse Transformation Method   10.2.2 The Rejection Method  10.3 Simulating from Discrete Distributions  10.4 Variance Reduction Techniques   10.4.1 Use of Antithetic Variables   10.4.2 Variance Reduction by Conditioning   10.4.3 Control Variates   Summary   Problems   Self-Test Problems and Exercises APPENDICESA Answers to Selected Problems B Solutions to Self-Test Problems and Exercises Index 

图书封面

图书标签Tags

评论、评分、阅读与下载


    概率论基础教程 PDF格式下载


用户评论 (总计5条)

 
 

  •   作者是美国随机方面的大家,许多美国大学均选择其书籍作为教材。如:ColumbiaUniversity,等等。所以,对于初级学生而言,还是对于专业人事而言,均是非常好的。
  •   说着书浅的大哥是个研究生吧...对本科生我觉得是够了想想国内的书,概率论+数理统计+随即过程,最多有这本书一半那么厚。书中的例题包罗万象,有些还挺难的。习题也是大把大把的缺点是组织得有点乱,每次想在书里找点什么东西东很费劲总之强烈推荐作为本科概率论教材,你想学的几乎都在里面
  •   此书风格很Ross,不过内容还是浅些,初学的话相当推荐,否则就算了吧
  •   goodtextbook
  •   我上学期教本科生这门课,作为参考,用的还是挺少的。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7