00004, tushu007.com

<<Hibernatel] [1 >>

gobooo

O 0O O <<Hibernate [J >>
1300 ISBNUO O 0 9787115160614
1000 ISBNO O 1J 7115160619

0 dodogn2007-6
gooooboooogooao
Ooo(@)oo

000841

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00004, tushu007.com
<<Hibernatel] [1 >>

goon

O 0O O Hibernate 0 O (020 - OO0 0)0 00O OO O Hibernateld Java Persistencel 0 O 00000000
Oo00ooo

0000000000000 00D0O000000000O 0O Hibernate 3.200 Java Persistence [[[0 0 O
OO00000000OO0DOOooDOooOo/oooooorRMODOODOODOOOODOOoOODODODn
00

OO0000000000DOO0DOO0DOoooooooooorRMOOODODOOOoOoOooOoOGg

Page 2

00004, tushu007.com
<<Hibernatel] [1 >>

goon

O O Christian Bauerd O HibernateO O OO0 OO OO OO OOHibernateD OO OO OO
00 0 O Red Hatd O JBoss O O O Hibernated EJB3.00 SeamO O O O O O

Page 3

00000, tushu007.com
<<Hibernatel] [] >>

good

Partl[] Getting started with Hibernate and EJB 3.0100 Understanding object/relational persistencel.10] What is
persistence?[] Relational databases] Understanding SQLLI Using SQL in Javall Persistence in object-oriented
applications1.2[] The paradigm mismatch] The problem of granularity(] The problem of subtypes(] The
problem of identity[] Problems relating to associations[] The problem of data navigation] [0 The cost of the
mismatch1.3[0 Persistence layers and alternativesd Layered architecture[] Hand-coding a persistence layer with
SQL/IDBCL Using serializationd Object-oriented database systems[] Other optionsl1.4[] Object/relational
mappingd What is ORM?0 Generic ORM problems] Why ORM?0 Introducing Hibernate, EJB3, and JPA1.5
(0 Summary2[] Starting a project2.10] Starting a Hibernate project] Selecting a development processC] Setting up
the projectl] Hibernate configuration and startupl] Running and testing the application2.2[1 Starting a Java
Persistence project] Using Hibernate Annotations[] Using Hibernate EntityManager(] Introducing EJB
componentsC] Switching to Hibernate interfaces2.30] Reverse engineering a legacy database[] Creating a database
configurationd Customizing reverse engineering] Generating Java source code2.4(] Integration with Java EE
services Integration with JTAL] JNDI-bound SessionFactoryl] JMX service deployment2.5001 Summary3

[0 Domain models and metadata3.100 The CaveatEmptor application[J Analyzing the business domain[] The
CaveatEmptor domain model3.200 Implementing the domain modelJ Addressing leakage of concerns

[0 Transparent and automated persistenceld Writing POJOs and persistent entity classesC] Implementing POJO
associations[] Adding logic to accessor methods3.3[] Object/relational mapping metadatal] Metadata in XML

[0 Annotation-based metadatal] Using XDocletl] Handling global metadatal] Manipulating metadata at
runtime3.400 Alternative entity representation] Creating dynamic applicationsC] Representing data in XML3.5

[0 SummaryPart 2[1 Mapping concepts and strategies4[] Mapping persistent classes4.1[] Understanding entities
and value typesl] Fine-grained domain modelsC] Defining the concept[] Identifying entities and value types4.2

[0 Mapping entities with identity(] Understanding Java identity and equality(] Handling database identity

[0 Database primary keys4.3[0] Class mapping options] Dynamic SQL generation] Making an entity immutable
[0 Naming entities for querying Declaring a package nameld Quoting SQL identifiersC] Implementing naming
conventions4.4[] Fine-grained models and mappingsC] Mapping basic propertiest] Mapping components4.5

00 Summary50 Inheritance and custom types5.1[] Mapping class inheritancel] Table per concrete class with
implicit polymorphism[Table per concrete class with unions] Table per class hierarchy[] Table per subclass

[Mixing inheritance strategiest] Choosing a strategy5.2[1 The Hibernate type system[] Recapitulating entity and
value typest] Built-in mapping typesC] Using mapping types5.3[] Creating custom mapping types] Considering
custom mapping typest] The extension pointsC] The case for custom mapping typest] Creating a UserType

[Creating a CompositeUserTypel] Parameterizing custom typesC] Mapping enumerations5.4] Summary6

[0 Mapping collections and entity associations6.1[] Sets, bags, lists, and maps of value types] Selecting a collection
interface[] Mapping a setl] Mapping an identifier bagl] Mapping a listzJ Mapping a mapU] Sorted and ordered
collections6.2[] Collections of componentsC] Writing the component classCJ Mapping the collectiond Enabling
bidirectional navigation[] Avoiding not-null columns6.3[] Mapping collections with annotations[] Basic
collection mappingl] Sorted and ordered collections] Mapping a collection of embedded objects6.40]1 Mapping a
parent/children relationship] Multiplicity(] The simplest possible association] Making the association
bidirectional] Cascading object state6.5[1 Summary7] Advanced entity association mappings7.1] Single-valued
entity associationsl] Shared primary key associationsl] One-to-one foreign key associations[] Mapping with a join
table7.2[0 Many-valued entity associationsl] One-to-many associationsC] Many-to-many associationst] Adding
columns to join tablest] Mapping maps7.31 Polymorphic associationsC] Polymorphic many-to-one associations
[0 Polymorphic collections] Polymorphic associations to unionsC] Polymorphic table per concrete class7.4

00 Summary80 Legacy databases and custom SQL8.100 Integrating legacy databases(] Handling primary keys

O Arbitrary join conditions with formulasC] Joining arbitrary tablesC] Working with triggers8.2[] Customizing
SQLO Writing custom CRUD statements[] Integrating stored procedures and functions8.3[] Improving schema

Page 4

00000, tushu007.com
<<Hibernatel] [] >>

DDLO Custom SQL names and datatypes[] Ensuring data consistency[] Adding domains and column constraints
[Table-level constraints] Database constraintsC] Creating indexes] Adding auxiliary DDL8.4[0 SummaryPart 3
1 Conversational object processing9] Working with objects9.11 The persistence lifecycle[] Object statesC] The
persistence context9.2[1 Object identity and equality] Introducing conversations[] The scope of object identity

[0 The identity of detached objectsC] Extending a persistence context9.3[0 The Hibernate interfaces] Storing and
loading objectsC] Working with detached objectsC] Managing the persistence context9.400 The Java Persistence
API0 Storing and loading objectsC] Working with detached entity instances9.500 Using Java Persistence in EJB
components] Injecting an EntityManager[d Looking up an EntityManager(d] Accessing an
EntityManagerFactory9.6(1 Summary100] Transactions and concurrency10.100 Transaction essentialsC] Database
and system transactions[] Transactions in a Hibernate application] Transactions with Java Persistence10.2

[Controlling concurrent accessC] Understanding database-level concurrencyl] Optimistic concurrency control
[J Obtaining additional isolation guarantees10.3[]1 Nontransactional data accessC] Debunking autocommit myths
[0 Working nontransactionally with Hibernate[] Optional transactions with JTA10.4[] Summary11

O Implementing conversations11.1[1 Propagating the Hibernate Session[] The use case for Session propagation

[Propagation through thread-locallJ Propagation with JTALI Propagation with EJBs11.2[] Conversations with
HibernateJ Providing conversational guaranteest] Conversations with detached objectsC] Extending a Session for
a conversation11.30 Conversations with JPA Persistence context propagation in Java SELJ Merging detached
objects in conversationsl] Extending the persistence context in Java SE11.40] Conversations with EJB 3.0

[J Context propagation with EJBs[] Extended persistence contexts with EJBs11.500 Summary12[] Modifying
objects efficiently12.1[] Transitive persistencePersistence by reachability[] Applying cascading to associations

[0 Working with transitive state[] Transitive associations with JPA12.2[1 Bulk and batch operationst] Bulk
statements with HQL and JPA QLI Processing with batches[] Using a stateless Session12.3[1 Data filtering and
interception] Dynamic data filtersC] Intercepting Hibernate events[] The core event system[] Entity listeners and
callbacks12.400 Summary13[] Optimizing fetching and caching13.100 Defining the global fetch plan] The
object-retrieval optionsd The lazy default fetch planC] Understanding proxiesC] Disabling proxy generation

[Eager loading of associations and collections[d Lazy loading with interception13.2[0 Selecting a fetch strategy

O Prefetching data in batches[] Prefetching collections with subselectsC] Eager fetching with joins[] Optimizing
fetching for secondary tablesC] Optimization guidelines13.300 Caching fundamentals] Caching strategies and
scopesl] The Hibernate cache architecture13.4[1 Caching in practicel] Selecting a concurrency control strategy

[0 Understanding cache regions[] Setting up a local cache provider Setting up a replicated cache[d Controlling
the second-level cache13.500 Summary14[Querying with HQL and JPA QL14.1[1 Creating and running queries
[Preparing a queryld Executing a query Using named queries14.2[1] Basic HQL and JPA QL querieslJ Selection
[Restriction Projection14.3[J Joins, reporting queries, and subselects] Joining relations and associations

[Reporting queries[] Using subselects14.400 Summary150 Advanced query options15.100 Querying with criteria
and example[] Basic criteria queriesd Joins and dynamic fetchingd Projection and report queriest] Query by
example15.200 Using native SQL queries[] Automatic resultset handling] Retrieving scalar values[] Native SQL in
Java Persistencel15.30] Filtering collections15.4[] Caching query resultstJ Enabling the query result cache

0 Understanding the query cachelJ When to use the query cache[J Natural identifier cache lookups15.5

[0 Summary160] Creating and testing layered applications16.11 Hibernate in a web application] Introducing the
use case[] Writing a controller] The Open Session in View pattern[] Designing smart domain models16.2

[Creating a persistence layer[] A generic data-access object patternC] Implementing the generic CRUD interface
O Implementing entity DAOs[Using data-access objects16.3[] Introducing the Command pattern The basic
interfacest] Executing command objects] Variations of the Command pattern16.4] Designing applications with
EJB 3.000 Implementing a conversation with stateful beansC] Writing DAOs with EJBs[] Utilizing dependency
injection16.500 Testingld Understanding different kinds of testsC] Introducing TestNGL Testing the persistence
layerd Considering performance benchmarks16.6(1 Summary170] Introducing JBoss Seam17.1[] The Java EE 5.0
programming model[] Considering JavaServer Facesl[] Considering EJB 3.0C1 Writing a web application with JSF

Page 5

00000, tushu007.com
<<Hibernatel] [1 >>

and EJB 3.000J Analyzing the application17.2] Improving the application with Seam[] Configuring Seam

[Binding pages to stateful Seam components[] Analyzing the Seam application17.300 Understanding contextual
componentsC] Writing the login page[] Creating the componentsC] Aliasing contextual variablesC] Completing the
login/logout feature17.40 Validating user input[] Introducing Hibernate Validator[] Creating the registration
pagel] Internationalization with Seam17.500 Simplifying persistence with Seam[] Implementing a conversation

[0 Letting Seam manage the persistence context17.6(1 Summaryappendix A SQL fundamentalsappendix B
Mapping quick referencereferencesindex

Page 6

00004, tushu007.com
<<Hibernatel] [1 >>

goon

OO0OHbernate DO (C20- DO0O0)DOO0DOOoOoOooOoboboorRMOODOODOOOOOOOODO
HEN

Page 7

00004, tushu007.com
<<Hibernatel] [1 >>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

