人工智能

出版时间:2002-4  出版社:人民邮电  作者:[英]拉塞尔,[美]诺文 著  页数:932  字数:1342000  
Tag标签:无  

内容概要

本书在智能Agent的概念框架下,把人工智能中相互分离的领域统一起来。全书主体内容共分为六大部分,即问题解、知识与推理、合乎逻辑的行动、不确定知识与推理、学习,以及通信、感知与行动。本书通过Agent从感知外部环境、到实施行动、并最后对外部环境施加影响的全过程,将这六部分组织起来,形成一个相互联系的整体,使读者对人工智能有一个完整的概念,达到较好的效果。  本书可以作为信息领域及相关领域的高等院校本科生和研究生的教科书或教学参考书,也可以作为相关领域的科研与工程技术人员的参考书。

作者简介

作者:(美国)拉塞尔 (tuartRussell) (美国)诺文 (PeterNorvig)

书籍目录

Ⅰ Artificial Intelligence 11 Introduction 31.1 What Is AI? 4·Acting humanly: The Turing Test approach 5·Thinking humanly: The cognitive modelling approach 6·Thinking rationally: The laws of thought approach 6·Acting rationally: The rational agent approach 71.2 The Foundations of Artificial Intelligence 8·Philosophy(428 B.C.-present) 8·Mathematics(c.800-present) 11·Psychology (1879-present) 12·Computer engineering(1940-present) 14·Linguistics(1957-present) 151.3 The History of Artificial Intelligence 16·The gestation of artificial Intelligence(1943-1956) 16·Early enthusiasm, great expectations(1952-1969) 17·A dose of reality(1966-1974) 20·Knowledge-based systems: The key to power?(1969-1979) 22·AI becomes an Industry(1980-1988) 24·The return of neural networks(1986-present) 24·Recent events(1987-present) 251.4 The State of the Art 261.5 Summary 27Bibliographical and Historical Notes 28Exercises 282 Intelligent Agents 312.1 Introduction 312.2 How Agents Should Act 31·The Ideal mapping from percept sequences to actions 34·Autonomy 352.3 Structure of Intelligent Agents 35·Agent programs 37·Why not just look up the answers? 38·An example 39·Simple reflex agents 40·Agents that keep track of the world 41·Goal-based agents 42·Utility-based agents 442.4 Environments 45·Properties of environments 46·Environment programs 472.5 Summary 49·Bibliographical and Historical Notes 50·Exercises 50Ⅱ Problem-solving 533 Solving Problems by Searching 553.1 Problem-Solving Agents 553.2 Formulating Problems 57·Knowledge and problem types 58·Well-defined problems and solutions 60·Measuring problem-solving performance 61·Choosing states and actions 613.3 Example Problems 63·Toy Problems 63·Real-world problems 683.4 Searching for Solutions 70·Generating action sequences 70·Data structures for search trees 723.5 Search Strategies 73·Breadth-first search 74·Uniform cost search 75·Depth-first search 77·Depth-limited search 78·Iterative deepening search 78·Bidirectional search 80·Comparing search strategies 813.6 Avoiding Repeated States 823.7 Constraint Satisfaction Search 833.8 Summary 85Bibliographical and Historical Notes 86Exercises 874 Informed Search Methods 924.1 Best-First Search 92·Minimize estimated cost to reach a goal:Greedy Search 93·Minimizing the total path cost: A* search 964.2 Heuristic Functions 101·The effect of heuristic accuracy on performance 102·Inventing heuristic functions 103·Heuristics for constraint satisfaction problems 1044.3 Memory bounded Search 106·Iterative deepening A* search (IDA*) 106·SMA* search 1074.4 Iterative Improvement Algorithms 111·Hill-climbing search 111·Simulated annealing 113·Applications in constraint Satisfaction problems 1144.5 Summary 115Bibliographical and Historical Notes 115Exercises 1185 Game Playing 1225.1 Introduction: games as Search Problems 1225.2 Perfect Decisions in Two-Person Games 1235.3 Imperfect Decisions 126·Evaluation functions 127·Cutting off search 1295.4 Alpha-Beta Pruning 129·Effectiveness of alpha-beta pruning 1315.5 Games That Include an Element of Chance 133·Position evaluation in games with chance nodes 135·Complexity of expectiminimax 1355.6 State-of-the-Art Game Programs 136·Chess 137·Checkers or Draughts 138·Othello 138·Backgammon 139·Go 1395.7 Discussion 1395.8 Summary 141Bibliographical and Historical Notes 141Exercises 145Ⅲ Knowledge and reasoning 1496 Agents that Reason Logically 1516.1 A Knowledge-Based Agent 1516.2 The Wumpus World Environment 153·Specifying the environment 154·Acting and reasoning in the wumpus world 1556.3 Representation, Reasoning, and Logic 157·Representation 160·Inference 163·Logics 1656.4 Propositional Logic: A Very Simple Logic 166·Syntax 166·Semantics 168·Validity and inference 169·Models 170·Rules of inference for propositional logic 171·Complexity of propositional inference 1736.5 An Agent for the Wumpus World 174·The knowledge base 174·Finding the wumpus 175·Translating knowledge into action 176·Problems with the propositional agent 1766.6 Summary 178Bibliographical and Historical Notes 178Exercises 1807 First-Order Logic 1857.1 Syntax and Semantics 186·Terms 188·Atomic sentences 189·Complex sentences 189·Quantifiers 189·Equality 1937.2 Extensions and Notational Variations 194·Higher-order logic 195·Functional and predicate expressions using the λ operator 195·The uniqueness quantifier Э! 196·The uniqueness operator ι 196·Notational variations 1967.3 Using First-Order Logic 197·The kinship domain 197·Axioms, definitions, and theorems 198·The domain of sets 199·Special notations for sets, lists and arithmetic 200·Asking questions and getting answers 2007.4 Logical Agents for the Wumpus World 2017.5 A Simple Reflex Agent 202 Limitations of simple reflex agents 2037.6 Representing Change in the World 203·Situation calculus 204·Keeping track of location 2067.7 Deducing Hidden Properties of the World 2087.8 Preferences Among Actions 2107.9 Toward a Goal-Based Agent 2117.10 Summary 211Bibliographical and Historical Notes 212Exercises 2138 Building a knowledge Base 2178.1 Properties of Good and Bad Knowledge Bases 2188.2 Knowledge Engineering 2218.3 The Electronic Circuits Domain 223·Decide what to talk about 223·Decide on a vocabulary 224·Encode general rules 225·Encode the specific instance 225·Pose queries to the inference procedure 2268.4 General Ontology 226·Representing Categories 229·Measures 231·Composite objects 233·Representing change with events 234·Times, intervals, and actions 238·Objects revisited 240·Substances and objects 241·Mental events and mental objects 243·Knowledge and action 2478.5 The Grocery Shopping World 247·Complete description of the shopping simulation 248·Organizing knowledge 249·Menu-planning 249·Navigating 252·Gathering 253·Communicating 254·Paying 2568.6 Summary 256Bibliographical and Historical Notes 256Exercises 2619 Inference in First-Order Logic 2659.1 Inference Rules Involving Quantifiers 2659.2 An Example Proof 2669.3 Generalized Modus Ponens 269·Canonical form 270·Unification 270·Sample proof revisited 2719.4 Forward and Backward Chaining 272·Forward-chaining algorithm 273·Backward-chaining algorithm 2759.5 Completeness 2769.6 Resolution: A Complete Inference Procedure 277·The resolution inference rule 278·Canonical forms for resolution 278·Resolution Proofs 279·Conversion to Normal Form 281·Example proof 282·Dealing with equality 284·Resolution strategies 2849.7 Completeness of resolution 2869.8 Summary 290Bibliographical and Historical Notes 291Exercises 29410 Logical Reasoning Systens 29710.1 Introduction 29710.2 Indexing, Retrieval, and Unification 299·Implementing sentences and terms 299·Store and fetch 299·Table-based indexing 300·Tree-based indexing 301·The unification algorithm 30210.3 Logic Programming Systems 304·The Prolog language 304·Implementation 305·Compilation of logic programs 306·Other logic programming languages 308·Advanced control facilities 30810.4 Theorem Provers 310·Design of a theorem prover 310·Extending Prolog 311·Theorem provers as assistants 312·Practical uses of theorem provers 31310.5 Forward-Chaining Production Systems 313·Match phase 314·Conflict resolution phase 315·Practical uses of production systems 31610.6 Frame Systems and Semantic Networks 316·Syntax and semantics of semantic networks 317·Inheritance with exceptions 319·Multiple inheritance 320·Inheritance and change 320·Implementation of semantic networks 321·Expressiveness of semantic networks 32310.7 Description Logics 323·Practical uses of description logics 32510.8 Managing Retractions, Assumptions, and Explanations 32510.9 Summary 327Bibliographical and Historical Notes 328Exercises 332Ⅳ Acting logically 33511 Planning 33711.1 A Simple Planning Agent 33711.2 From Problem Solving to Planning 338011.3 Planning in Situation Calculus 34111.4 Basic Representations for Planning 343·Representations for states and goals 343·Representations for actions 344·Situation space and plan space 345·Representations for plans 346·Solutions 34911.5 A Partial-Order Planning Example 34911.6 A Partial-Order Planning Algorithm 35511.7 Planning with Partially Instantiated Operators 35711.8 Knowledge Engineering for Planning 359·The blocks world 359·Shakey's world 36011.9 Summary 362Bibliographical and Historical Notes 363Exercises 36412 Practical Planning 36712.1 Practical Planners 367·Spacecraft assembly, integration, and verification 367·Job shop scheduling 369·Scheduling for space missions 369·Buildings, aircraft carriers, and beer factories 37112.2 Hierarchical Decomposition 371·Extending the language 372·Modifying the planner 37412.3 Analysis of Hierarchical Decomposition 375·Decomposition and sharing 379·Decomposition versus approximation 38012.4 More Expressive Operator Descriptions 381·Conditional effects 381·Negated and disjunctive goals 382·Universal quantification 383·A planner for expressive operator descriptions 38412.5 Resource Constraints 386·Using measures in planning 386·Temporal constraints 38812.6 Summary 388Bibliographical and Historical Notes 389Exercises 39013 Planning and Acting 39213.1 Conditional Planning 393·The nature of conditional plans 393·An algorithm for generating conditional plans 395·Extending the plan language 39813.2 A Simple Replanning Agent 401·Simple replanning with execution monitoring 40213.3 Fully Integrated Planning and Execution 40313.4 Discussion and Extensions 407·Comparing conditional planning and replanning 407·Coercion and abstraction 40913.5 Summary 410Bibliographical and Historical Notes 411Exercises 412Ⅴ Uncertain knowledge and reasoning 41314 Uncertainty 41514.1 Acting under Uncertainty 415·Handing uncertain knowledge 416·Uncertainty and rational decisions 418·Design for a decision-theoretic agent 41914.2 Basic Probability Notation 420·Prior probability 420·Conditional probability 42114.3 The Axioms of Probability 422·Why the axioms of probability are reasonable 423·The joint probability distribution 42514.4 Bayes' Rule and Its Use 426·Applying Bayes' rule: The simple case 426·Normalization 427·Using Bayes' rule: Combining evidence 42814.5 Where Do Probabilities Come From? 43014.6 Summary 431Bibliographical and Historical Notes 431Exercises 43315 Probabilistic Reasoning Systems 43615.1 Representing Knowledge in an Uncertain Domain 43615.2 The Semantics of Belief Networks 438·Representing the joint probability distribution 439·Conditional independence relations in belief networks 44415.3 Inference in Belief Networks 445·The nature of probabilistic inferences 446·An algorithm for answering queries 44715.4 Inference in Multiply Connected Belief Networks 453·Clustering methods 453·Cutset conditioning methods 454·Stochastic simulation methods 45515.5 Knowledge Engineering for Uncertain Reasoning 456·Case study: The Pathfinder system 45715.6 Other Approaches to Uncertain Reasoning 458·Defaulet reasoning 459·Rule-based methods for uncertain reasoning 460·Representing ignorance: Dempster-Shafer theory 462·Representing vagueness: Fuzzy sets and fuzzy logic 46315.7 Summary 464Bibliographical and Historical Notes 464Exercises 46716 Making Simple Decisions 47116.1 Combining Beliefs and Desires Under Uncertainty 47116.2 The Basis of Utility Theory 473·Constraints on rational preferences 473·…and then there was Utility 47416.3 Utility Functions 475·The utility of money 476·Utility Scales and utility assessment 47816.4 Multiattribute utility functions 480·Dominance 481·Preference structure and multiattribute utility 48316.5 Decision Networks 484·Representing a decision problem using decision net works 484·Evaluating decision networks 48616.6 The Value of Information 487·A simple example 487·A general formula 488·Properties of the value of information 489·Implementing an information-gathering agent 49016.7 Decision-Theoretic Expert Systems 49116.8 Summary 493Bibliographical and Historical Notes 493Exercises 49517 Making Complex Decision Problems 49817.1 Sequential Decision Problems 49817.2 Value Iteration 50217.3 Policy Iteration 50517.4 Decision-Theoretic Agent Design 508·The decision cycle of a rational agent 508·Sensing in uncertain worlds 51017.5 Dynamic Belief Networks 51417.6 Dynamic Decision Networks 516·Discussion 51817.7 Summary 519Bibliographical and Historical Notes 520Exercises 521Ⅵ Learning 52318 Learning from Observations 52518.1 A General Model of Learning Agents 525·Components of the performance element 527·Representation of the components 528·Available feedback 528·Prior knowledge 528·Bringing it all together 52918.2 Inductive Learning 52918.3 Learning Decision Trees 531·Decision trees as performance elements 531·Expressiveness of decision trees 532·Inducing decision trees from examples 534·Assessing the performance of the learning algorithm 538·Practical uses of decision tree learning 53818.4 Using Information Theory 540·Noise and overfitting 542·Broadening the applicability of decision trees 54318.5 Learning General Logical Descriptions 544·Hypotheses 544·Examples 545·Current-best-hypothesis search 546·Least-commitment search 549·Discussion 55218.6 Why Learning Works: Computational Learning Theory 552·How many examples are needed? 553·Learning decision lists 555·Discussion 55718.7 Summary 558Bibliographical and Historical Notes 559Exercises 56019 Learning in Neural and Belief Networks 56319.1 How the Brain Works 564·Comparing brains with digital computers 56519.2 Neural Networks 567·Notation 567·Simple computing elements 567·Network structures 570·Optimal network structure 57219.3 Perceptrons 573·What perceptrons can represent 573·Learning linearly separable functions 57519.4 Multilayer Feed-Forward Networks 578·Back-propagation learning 578·Back-propagation as gradient descent search 580·Discussion 58319.5 Applications of Neural Networks 584·Pronunciation 585·Handwritten character recognition 586·Driving 58619.6 Bayesian Methods for Learning Belief Networks 588·Bayesian learning 588·Belief network learning problems 589·Learning networks with fixed structure 589·A comparison of belief networks and neural networks 59219.7 Summary 593Bibliographical and Historical Notes 594Exercises 59620 Reinforcement Learning 59820.1 Introduction 59820.2 Passive Learning in a Known Environment 600·Naive updating 601·Adaptive dynamic programming 603·Temporal difference learning 60420.3 Passive Learning in an Unknown Environment 60520.4 Active Learning in an Unknown Environment 60720.5 Exploration 60920.6 Learning an Action-Value Function 61220.7 Generalization in Reinforcement Learning 615·Applications to game-playing 617·Application to robot control 61720.8 Genetic Algorithms and Evolutionary Programming 61920.9 Summary 621Bibliographical and Historical Notes 622Exercises 62321 Knowledge in Learning 62521.1 Knowledge in Learning 625·Some simple examples 626·Some general schemes 62721.2 Explanation-Based Learning 629·Extracting general rules from examples 630·Improving efficiency 63121.3 Learning Using Relevance Information 633·Determining the hypothesis space 633·Learning and using relevance information 63421.4 Inductive Logic Programming 636·An example 637·Inverse resolution 639·Top-down learning methods 64121.5 Summary 644Bibliographical and Historical Notes 645Exercises 647Ⅶ Communicating, perceiving, and acting 64922 Agents that Communicate 65122.1 Communication as Action 652·Fundamentals of language 654·The component steps of communication 655·Two models of communication 65922.2 Types of Communicating Agents 659·Communicating using Tell and Ask 660·Communicating using formal language 661·An agent that communicates 66222.3 A Formal Grammar for a Subset of English 662·The Lexicon of ε0 664·The Grammar ofε0 66422.4 Syntactic Analysis(Parsing) 66422.5 Definite Clause Grammar(DCG) 66722.6 Augmenting a Grammar 668·Verb Subcategorization 669·Generative Capacity of Augmented Grammars 67122.7 Semantic Interpretation 672·Semantics as DCG Augmentations 673·The semantics of “john loves Mary” 673·The semantics ofε1·Converting quasi-logical form to logical form 677·Pragmatic Interpretation 67822.8 ambiguity and Disambiguation 680·Disambiguation 68222.9 A Communicating Agent 68322.10 Summary 684Bibliographical and Historical Notes 685Exercises 68823 Practical Natural Language Processing 69123.1 Practical Applications 691·Machine translation 691·Database access 693·Information retrieval 694·Text categorization 695·Extracting data from text 69623.2 Efficient Parsing 701·Extracting parses from the chart: Packing 70123.3 Scaling Up the Lexicon 70323.4 Scaling Up the Grammar 705·Nominal compounds and apposition 706·Adjective phrases 707·Determiners 708·Noun phrases revisited 709·Clausal complements 710·Relative clauses 710·Questions 711·Handling agrammatical strings 71223.5 Ambiguity 712·Syntactic evidence 713·Lexical evidence 713·Semantic evidence 713·Metonymy 714·Metaphor 71523.6 Discourse Understanding 715·The structure of coherent discourse 71723.7 Summary 719Bibliographical and Historical Notes 720Exercises 72124 Perception 72424.1 Introduction 72424.2 Image Formation 725·Pinhole camera 725·Lens systems 727·Photometry of image formation 729·Spectrophotometry of image formation 73024.3 Image-Processing Operations for Early Vision 730·Convolution with linear filters 732·Edge detection 73324.4 Extracting3-D Information Using Vision 734·Motion 735·Binocular stereopsis 737·Texture gradients 742·Shading 743·Contour 74524.5 Using Vision for Manipulation and Navigation 74924.6 Object representation and Recognition 751·The alignment method 752·Using projective invariants 75424.7 Speech Recognition 757·Signal processing 758·Defining the overall speech recognition model 760·The language model: P(words) 760·The acoustic model: P(signallwords) 762·Putting the models together 764·The search algorithm 765·Training the model 76624.8 Summary 767Bibliographical and Historical Notes 767Exercises 771 25 Robotics 77325.1 Introduction 77325.2 Tasks: What Are Robots Good For? 774·Manufacturing and materials handling 774·Gofer robots 775·Hazardous environments 775·Telepresence and virtual reality 776·Augmentation of human abilities 77625.3 Parts: What are Robots Made Of? 777·Effectors: Tools for action 777·Sensors: Tools for Perception 78225.4 Architectures 786·Classical architecture 787·Situated automata 78825.5 Configuration Spaces: A Framework for Analysis 790·Generalized configuration space 792·Recognizable Sets 79525.6 Navigation and Motion Planning 796·Cell decomposition 796·Skeletonization methods 798·Fine-motion planning 802·Landmark-based navigation 805·Online algorithms 80625.7 Summary 809Bibliographical and Historical Notes 809Exercises 811Ⅷ Conclusions 81526 Philosophical Foundations 81726.1 The Big Questions 81726.2 Foundations of Reasoning and Perception 81926.3 On the Possibility of Achieving Intelligent Behavior 822·The mathematical objection 824·The argument from informality 82626.4 Intentionality and Consciousness 830·The Chinese Room 831·The Brain Prosthesis Experiment 835·Discussion 83626.5 Summary 837Bibliographical and Historical Notes 838Exercises 84027 AI: Present and Future 84227.1 Have We Succeeded Yet? 84227.2 What Exactly Are We Trying to Do? 84527.3 What If we Do Succeed? 848A Complexity analysis and O() notation 851A.1 Asymptotic Analysis 851A.2 Inherently Hard Problems 852Bibliographical and Historical Notes 853B Notes on Languages and Algorithms 854B.1 Defining Languages with Backus-Naur Form(BNF) 854B.2 Describing Algorithms with Pseudo-Code 855·Nondeterminism 855·Static variables 856·Functions as values 856B.3 The Code Repository 857B.4 Comments 857Bibliography 859Index 905

图书封面

图书标签Tags

评论、评分、阅读与下载


    人工智能 PDF格式下载


用户评论 (总计7条)

 
 

  •   不是我崇洋媚外,看了老外的书经常能让人豁然开朗,眼前一亮,常常折服于他们看待事物的深度和方法,说的简单是白痴都看得懂,前提是你有英语基础,毕竟这是英文版的...
  •   要花时间,但这本书确实全面,我在图书管找到的都没它全
  •   以前也看过一部分,现在上课时正在用,想好好读一下,真的很不错的一本书
  •   难度不是很大,要求一定的英语水平。
  •   讲解得很明白,适合入门,但因为关注面广,所以相应的深度打了折扣,但仍不失为经典,推荐
  •   不是第二版的不满意!
  •   书倒是好书,但是纸质太差,拿在手里感觉不舒服,还不如看电子版的
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7