000 0O, tushu007.com
<OQO00d0O0mn>>

gobooo

O00<<0ODOoDoogs>>
1300 ISBNUO O 0 9787111282464
1000 ISBNO O 10 7111282469

0 dodoo2009-10
gooooboooogooao
godooobooooogooao
000308

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

000 0O, tushu007.com
<OO00Ogdods>>

gd

This book presents software testing as a practical engineering activity[] essential toproducing high-quality software
(I It is designed to be used as the primary textbookin either an undergraduate or graduate course on software
testing[] as a supplementto a general course on software engineefing or data structures] and as a resource for
SOftware test engineers and developers[] TIIiS book has a number of uniquefeaturesC] e It organizes the complex
and confusing landscape of test coverage criteria with a novel and extremely simple structurel] At a technical level
[J software testing is based on satislying coverage criterial] The book’ S central observation is that there are feW
truly different coverage criterial] each of which fits easily into one of four categoriesC] graphs(] logical expressions
O input spacel] and syntax structures] Tllis not only simplifies testing[] but it also allows a convenient and direct
theoretica treatment of each category[] This approach contrasts strongly with the traditional view of testing

[J which treats testing at each phase in the development process differently] e It iS designed and written to be a
textbook[J The writing style is direct[] it builds the concepts from the ground up with a minimum of required
backgroundd and itin] eludes lots of examples] homework problems[] and teaching materialsC] It provides a
balance of theory and practical applicationl] presenting testing as a collection of objectivel] quantitative activities
that can be measured and repeated] The the[d oretical concepts are presented when needed to support the
practical activities that test engineers follow[] e It assumes that testing is part of a mental discipline that helps all IT
professionals develop higher-quality software[] Testing is not an anti-engineering activityd and it is not an
inherently destructive processtJ Neither is it only for testing specialists or domain expels who know little about
programming or math[] e It is designed with modular(] interconnecting pieces] thus it can be used in multiC]
pie courses] Most of the book requires only basic discrete math and introductory programmingl] and the parts
that need more background are clearly marked[]

Page 2

000 0O, tushu007.com
<OQO00d0O0mn>>

goon

gobbobbbuodggooobbbbbuoooogobbobbboooooobobbobboooog

ERERE
OO0000ob0ob0obobobobooboobooobobuobobowebDbODODooonoO

goboboobbuoooooon

Page 3

000 0O, tushu007.com
<OQO00d0O0mn>>

goon

000 0O)O O (Paul Ammann) (O 0) O O O (Jeff Offutt)Paul AmmannO O O O OO0 00000000
OO00000000DO0ODO- ODOoDOoDoOooooooo

00200700000 O00OVolgenauDO OO ODOODDOODOODOODOODOO

ffofutd 0 0000000000000 0O0O0ODO0ODO0OO.- ODODOODOO00O000O0

O O O O Journal of Software Testing[d Verification and ReliabilityO O O O O OO IEEED OO OO OO OO
0000000000000 DOO0DOO0DOOoDOOood

ODOoz20300000- O00OVolgenauD O OO OODDOODOODOODOOOO

Page 4

000 0O, tushu007.com
<OO00Ogdods>>

good

PrefacePart 1 Overview[] 101 Introduction] [1.1 Activities of a Test Engineerd [J [1.1.1 Testing Levels Based
on Software Activity(] [0 [1.1.2 Beizer's Testing Levels Based on Test Process Maturity[] [1 [] 1.1.3 Automation
of Test Activities[] [1 1.2 Software Testing Limitations and Terminology[] (1 1.3 Coverage Criteria for Testing[l

00 O 1.3.1 Infeasibility and Subsumption] [0 [0 1.3.2 Characteristics of a Good Coverage Criteriond [1.4 Older
Software Testing Terminology[] O 1.5 Bibliographic NotesPart 2 Coverage Criterial] 20 Graph Coverage] [2.1
Overviewl] 0 2.2 Graph Coverage Criterial] [J [0 2.2.1 Structural Coverage Criterial] [0 [J 2.2.2 Data Flow
Criteriald O O 2.2.3 Subsumption Relationships among Graph Coverage Criteria [[J 2.3 Graph Coverage for
Source Codeld 0 O 2.3.1 Structural Graph Coverage for Source Codel] [1 [J 2.3.2 Data Flow Graph Coverage for
Source Code 2.4 Graph Coverage for Design ElementsC] [1 [1 2.4.1 Structural Graph Coverage for Design
Elementsd O [J 2.4.2 Data Flow Graph Coverage for Design Elements 2.5 Graph Coverage for Specificationst]

[J 0 2.5.1 Testing Sequencing Constraints[] [J [J 2.5.2 Testing State Behavior of Software 2.6 Graph Coverage for
Use Casesld [[0 2.6.1 Use Case Scenarios 2.7 Representing Graphs Algebraicallyl] [J [J 2.7.1 Reducing Graphs
to Path Expressionstd [0 [0 2.7.2 Applications of Path ExpressionsC] O O 2.7.3 Deriving Test InputsU [[1 2.7.4
Counting Paths in a Flow Graph and Determining Max Path Length] O [2.7.5 Minimum Number of Paths to
Reach All Edges(] [0 [0 2.7.6 Complementary Operations Analysis 2.8 Bibliographic Notes 3[J Logic Coverage
3.1 Overview: Logic Predicates and Clauses 3.2 Logic Expression Coverage Criterial] O [3.2.1 Active Clause
Coverage O [J 3.2.2 Inactive Clause Coveragel] O [J 3.2.3 Infeasibility and SubsumptionJ [J 0 3.2.4 Making a
Clause Determine a Predicate[] [O 3.2.5 Finding Satisfying Values 3.3 Structural Logic Coverage of Programs(]
[0 O 3.3.1 Predicate Transformation Issues 3.4 Specification-Based Logic Coveragel] [3.5 Logic Coverage of
Finite State Machines 3.6 Disjunctive Normal Form Criteria 3.7 Bibliographic Notes[] 4 Input Space
Partitioning 4.1 Input Domain Modeling] [0 [0 4.1.1 Interface-Based Input Domain Modelingd O [0 4.1.2
Functionality-Based Input Domain Modeling[] [0 [0 4.1.3 Identifying CharacteristicsC] [[0 4.1.4 Choosing
Blocks and Values[] [0 [0 4.1.5 Using More than One Input Domain Model[] [0 [0 4.1.6 Checking the Input
Domain Model 4.2 Combination Strategies Criteria 4.3 Constraints among Partitions 4.4 Bibliographic Notes
(05 Syntax-Based TestingPart 3 Applying Criteria in Practice[] 61 Practical Considerations[] 7] Engineering
Criteria for Technologies[] 81 Building Testing Tools[] 91 Challenges In Testing SoftwareList of
CriteriaBibliographylndex

Page 5

000 0O, tushu007.com
<OO00Ogdods>>

good

0 O O In Level 1 testing[] the purpose is to show correctnesst] While a significant step upfrom the naive level
0.this has the ortunate problem that in any but the most triv-ial of programsC] correctness is virtually impossible to
either achieve or demonstrate.Suppose we run a collection of tests and find no failures.\What do we know[]
Shouldwe assume that we have good software or iust bad tests[]

Since the goal of correct.ness is impossible[] test engineers usually have no strict goal[real stopping rule

[0 orformal test technique.If a development manager asks how much testing remains tobe done.the test manager
has no way to answer the question.In fact.test managersare in a powerless position because they have no way to
quantitatively express orevaluate their work.In Level 2 testing.the purpose is to show failures.Although looking for
failuresis certainly a valid goalll it is also a negative goal. Testers may enjoy finding theproblem(] but the developers
never want to find problems-they want the softwareto work [J level 1 thinking is natural for the developers] .Thus
[J level 2 testing putstesters and developers into an adversarial relationship] which can be bad for
teammorale.Beyond that.when our primary goal is to look for failures.we are still leftwondering what to do if no
failures are found.Is our work donelJ

Is our softwarevery good.or is the testing weak[]

Having confidence in when testing is complete isan important goal for all testers. The thinking that leads to Level 3
testing starts with the realization that testingcan show the presencel] but not the absencel] of failures.This lets us
accept the factthat whenever we use softwarel] we incur some risk. The risk may be small and theconsequences
unimportantJ or the risk may be great and the consequences catas.trophic.but risk is always there.This allows us to
realize that the entire develop-ment team wants the same thing-to reduce the risk of using the software.In level
3testingl] both testers and developers work together to reduce risk.Once the testers and developers are on the same
“ team.” an organization canprogress to real Level 4 testing.Level 4 thinking defines testing as a mental disci-pline
that increases quality.Various ways exist to increase quality] of which creatingtests that cause the sOftware to fail is
only one.Adopting this mindset.test engi.neers can become the technical leaders of the Droiect[] as is common in
many otherengineering disciplinest .They have the primary responsibility of measuring and im-proving software
quality] and their expertise should help the developers.An analogythat Beizer used is that of a spell checker.We
often think that the purpose of a spellchecker is to find misspelled words(]

but in fact.the best purpose of a spell checkeris to improve our ability to spell.Every time the spell checker finds an
incorrectlyspelled word.we have the opportunity to learn how to spell the word correctly. Thespell checker is the

“ expert” on spelling quality.In the same way[] level 4 testingmeans that the purpose of testing is to improve the
ability of the developers to pro-duce high quality software. The testers should train your developers.As a reader of
this book[] you probably start at level 001 101 or 2.Most softwaredevelopers go through these levels at some stage in
their careers.If you work insoftware developmentl] you might pause to reflect on which testing level describesyour
company or team.The rest of this chapter should help you move to level 2thinking.and to understand the
importance of level 3.

Page 6

000 0O, tushu007.com
<OQO00d0O0mn>>

gobooooo

“00000D00DO00O0DO0DO0000bO00DbO0ODbOODOOoDOoDODOn

OAmmannO Offutt0 D0 00000000000 DO0OD00000O0000O00000O0DO0ODO0
OO0000000000ooOoo

" OO0 ——RogerAlexanderD D O OO OO0

Page 7

000 0O, tushu007.com
<OQO00d0O0mn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

