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In writing this third edition of a classic book, I have been guided by the same uuderly hag philosophy of the first
edition of the book:Write an up wdate treatment of neural networks in a comprehensive, thorough, and read able
manner.The new edition has been retitied Neural Networks and Learning Machines, in order toreflect two reahties:
L The perceptron, the multilayer perceptroo, self organizing maps, and neuro dynamics, to name a few topics, have
always been considered integral parts of neural networks, rooted in ideas inspired by the human brain.2. Kernel
methods, exemplified by support vector machines and kernel principal components analysis, are rooted in
statistical learning theory.Although, indeed, they share many fundamental concepts and applications, there
aresome subtle differences between the operations of neural networks and learning ma chines. The underlying
subject matter is therefore much richer when they are studiedtogether, under one umbrella, particulasiy so when
ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks
beyond the capability of either one operating on its own, and ideas inspired by the human brain lead to new
perspectives wherever they are of particular importance.
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(0 O O knowledge, the teacher is able to provide the neural network with a desired responsefor that training vector.
Indeed, the desired response represents the "optimum™ ac-tion to be performed by the neural network. The
network parameters are adjustedunder the combined influence of the training vector and the error signal. The
errorsignal is defined as the difference between the desired response and the actual re-sponse of the network. This
adjustment is carried out iteratively in a step-by-stepfashion with the aim of eventually making the neural network
emulate the teacher;the emulation is presumed to be optimum in some statistical sense. In this way,knowledge of
the environment available to the teacher is transferred to the neuralnetwork through training and stored in the form
of"fixed" synaptic weights, repre-senting long-term memory. When this condition is reached, we may then
dispensewith the teacher and let the neural network deal with the environment completelyby itself. The form of
supervised learning we have just described is the basis of error-correction learning. From Fig. 24, we see that the
supervised-learning process con-stitutes a closed-loop feedback system, but the unknown environment is outside
theloop. As a performance measure for the system, we may think in terms of the mean-square error, or the sum of
squared errors over the training sample, defined as a func-tion of the free parameters O i.e., synaptic weightst] of
the system. This function maybe visualized as a multidimensional error-performance surface, or simply error
surface,with the free pai‘ameters as coordinates. The true error surface is averaged over allpossible input-output
examples. Any given operation of the system under theteacher’s supervision is represented as a point on the error
surface. For the system toimprove performance over time and therefore learn from the teacher, the operatingpoint
has to move down successively toward a minimum point of the error surface;the minimum point may be a local
minimum or a global minimum. A supervisedlearning system is able to do this with the useful information it has
about the gradient of the error surface corresponding to the current behavior of the system.
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