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O O I have made some substantial changes in this new edition of Introductory CombinatoricsC] and they are
summarized as follows:[] [J In Chapter 1, a new section [J Section 1.6[1 on mutually overlapping circles has been
added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured
in Chapter 7.00 [I The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an
exercise.[] [0 Chapter 2 in the previous edition [J The Pigeonhole Principled has become Chapter 3. Chapter 3 in
the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous
edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term
combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of
multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset. ]

[J Chapter 2 now contains a short section [J Section 3.60] on finite probability.[] [J Chapter 3 now contains a
proof of Ramseys theorem in the case of pairs.CJ [J Some of the biggest changes occur in Chapter 7, in which
generating functions and exponential generating functions have been moved to earlier in the chapter [J Sections 7.2
and 7.300 and have become more central.lJ [J The section on partition numbers [J Section 8.3[] has been
expanded. O Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change.
It is now an interlude chapter [ Chapter 901 on systems of distinct representatives [J SDRs[] ——the marriage
and stable marriage problemsand the discussion on bipartite graphs has been removed.[J [J As a result of the
change in Chapter 9, in the introductory chapter on graph theory [ Chapter 1101 , there is no longer the
assumption that bipartite graphs have been discussed previously.
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[0 O Chapter 3[J [ The Pigeonhole Principle[] [1 We consider in this chapter an important[] but elementary,
combinatorial principle that can be used to solve a variety of interesting problems, often with surprising
conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole
principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes,
it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be
occupied by two or more pigeons. A more precise statement is given below.d [0 3.1 Pigeonhole Principle: Simple
FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion. Theorem 3.1.1 If n+1
objects are distributed into n boxes, then at least one box contains two or more of the objects.(] (I Proof. The
proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of
objectsisatmost1+ 1 + ... +10 nls0J = n.Since we distribute n + 1 objects, some box contains at least two of the
objects.[J [0 Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains
two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that
contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus,
whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it
will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to
examine all possibilities.
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