微分方程与边界值问题

出版时间:2003-1  出版社:机械工业出版社  作者:[美] 兹尔(Zill,D.  页数:631  
Tag标签:无  

内容概要

微分方程问题是工程和应用数学领域的重要问题。本书是作者多年教学经验的总结,示例丰富、内容全面。条理清晰。在编写的过程中,作者一直遵循便于学生理解和记忆的原则,所以本书的内容没有采用过于理论化的方式,而是以直观、易读的方式表述。本书对传统的教学方式和教学内容的各个方面都进行了革新,不仅内容更加吸引读者,同时加强了与现实世界的联系,使传统的教学内容与新知识完美结合。

书籍目录

PREFACE IXACKNOWLEDGMENTS XIIi1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 1  1.1 Definitions and Terminology 2  1.2 Initial-Value Problems 15  1.3 Differential Equations as Mathematical Models 22  Chapter 1 in Review 372 FIRST-ORDER DIFFERENTIAL EQUATIONS 39  2.1 Solution Curves Without the Solution 40  2.2 Separable Variables 51  2.3 Linear Equations 60  2.4 Exact Equations 72  2.5 Solutions by Substitutions 80  2.6 A Numerical Solution 86  Chapter 2 in Review 923 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS 95  3.1 Linear Equations 96  3.2 Nonlinear Equations 109  3.3 Systems of Linear and Nonlinear Differential Equations 121  Chapter 3 in Review 130  Project Module: Harvesting of Renewable Natural Resources, by  Gilbert N. Lewis 1334 HIGHER-ORDER DIFFERENTIAL EQUATIONS 138  4.1 Preliminary Theory: Linear Equations 139    4.1.1 Initial-Value and Boundary-Value Problems 139    4.1.2 Homogeneous Equations 142    4.1.3 Nonhomogeneous Equations 148  4.2 Reduction of Order 154  4.3 Homogeneous Linear Equations with Constant Coefficients 158  4.4 Undetermined Coefficients--Superposition Approach 167  4.5 Undetermined Coefficients--Annihilator Approach 178  4.6 Variation of Parameters 188  4.7 Cauchy-Euler Equation 193  4.8 Solving Systems of Linear Equations by Elimination 201  4.9 Nonlinear Equations 207  Chapter 4 in Review 2125 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS 215  5.1 Linear Equations: Initial-Value Problems 216    5.1.1 Spring/Mass Systems: Free Undamped Motion 216    5.1.2 Spring/Mass Systems: Free Damped Motion 220    5.1.3 Spring/Mass Systems: Driven Motion 224    5.1.4 Series Circuit Analogue 227  5.2 Linear Equations: Boundary-Value Problems 237  5.3 Nonlinear Equations 247  Chapter 5 in Review 259  Project Module: The Collapse of the Tacoma Narrows  Suspension Bridge, by Gilbert N. Lewis 2636 SERIES SOLUTIONS Of LINEAR EQUATIONS 267  6.1 Solutions About Ordinary Points 268    6.1.1 Review of Power Series 268    6.1.2 Power Series Solutions 271  6.2 Solutions About Singular Points 280  6.3 Two Special Equations 292  Chapter 6 in Review 3047 THE LAPLACE TRANSFORM 306  7.1 Definition of the Laplace Transform 307  7.2 Inverse Transform and Transforms of Derivatives 314  7.3 Translation Theorems 324     7.3.1 Translation on the s-Axis 324     7.3.2 Translation on the t-Axis 328  7.4 Additional Operational Properties 338  7.5 Dirac Delta Function 351  7.6 Systems of Linear Equations 354  Chapter 7 in Review 3618 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 364  8.1 Preliminary Theory 365  8.2 Homogeneous Linear Systems with Constant Coefficients 375    8.2.1 Distinct Real Eigenvalues 376    8.2.2 Repeated Eigenvalues 380    8.2.3 Complex Eigenvalues 384    8.3 Variation of Parameters 393  8.4 Matrix Exponential 399  Chapter 8 in Review 404  Project Module: Earthquake Shaking of Multistory Buildings, by  Gilbert N. Lewis 4069 NUMERICAL SOLUTIONS Of ORDINARY DIFFERENTIAL EQUATIONS 410  9.1 Euler Methods and Error Analysis 411  9.2 Runge-Kutta Methods 417  9.3 Multistep Methods 424  9.4 Higher-Order Equations and Systems 427  9.5 Second-Order Boundary-Value Problems 433  Capter 9 in Review 43810 PLANEAUTONOMOUSSYSTEMSAND STABILITY 439  10.1 Autonomous Systems, Critical Points, and Periodic Solutions 440  10.2 Stability of Linear Systems 448  10.3 Linearization and Local Stability 458  10.4 Modeling Using Autonomous Systems 470  Chapter 10 in Review 48011 ORTHOGONAL FUNCTIONSAND FOURIER SERIES 483  11.1 Orthogonal Functions 484  11.2 Fourier Series 489  11.3 Fourier Cosine and Sine Series 495  11.4 Sturm-Liouville Problem 504  11.5 Bessel and Legendre Series 511  11.5.1 Fourier-Bessel Series 512  11.5.2 Fourier-Legendre Series 515  Chapter 11 in Review 519  PARTIAL DIFFERENTIAL EQUATIONS AND12 BOUNDARY-VALUEPROBLEMS IN RECTANGULAR COORDINATES 521  12.1 Separable Partial Differential Equations 522  12.2 Classical Equations and Boundary-Value Problems 527  12.3 Heat Equation 533  12.4 Wave Equation 536  12.5 Laplace's Equation 542  12.6 Nonhomogeneous Equations and Boundary Conditions 547  12.7 Orthogonal Series Expansions 551  12.8 Boundary-Value Problems Involving Fourier Series in Two  Variables 555  Chapter 12 in Review 55913 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS 561  13.1 Problems Involving Laplace's Equation in Polar Coordinates 562  13.2 Problems in Polar and Cylindrical Coordinates: Bessel  Functions 567  13.3 Problems in Spherical Coordinates: Legendre Polynomials 575  Chapter 13 in Review 57814 INTEGRAL TRANSFORM METHOD 581  14.1 Error Function 582  14.2 Applications of the Laplace Transform 584  14.3 Fourier Integral 595  14.4 Fourier Transforms 601  Chapter 14 in Review 60715 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 610  15.1 Elliptic Equations 611  15.2 Parabolic Equations 617  15.3 Hyperbolic Equations 625Chapter 15 in Review 630APPENDIXES APP-1I Gamma Function APP-1II Introduction to Matrices APP-3III Laplace Transforms APP-25SELECTED ANSWERS FOR ODD-NUMBEREDPROBLEMS AN- 1INDEX I-1

图书封面

图书标签Tags

评论、评分、阅读与下载


    微分方程与边界值问题 PDF格式下载


用户评论 (总计0条)

 
 

 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7