偏微分方程数值解法

出版时间:2010-11  出版社:高等教育  作者:李荣华 编  页数:254  
Tag标签:无  

前言

本次修订的主要变化是各章配备了若干数值例子,并将原第六章“离散化方程的解法”调前为第四章,目的是加强方法的应用,更便于配合讲授进行计算实习。这些例子多取自笔者与刘播编写的《微分方程数值解法》(第四版)(高等教育出版社,2009年)。按现在的章目次序,本书可视为由如下两部分组成:前四章为边值问题的数值解法,后两章为初值问题的数值解法。需指出的是,本书与《微分方程数值解法》(第四版)的主要区别是:后者包括常微分方程数值解法;在偏微分方程数值解法部分,后者先讲有限差分法,再讲Galerkin有限元法;从方法与理论的处理上看,后者更偏重方法及其应用。本书则仅含偏微分方程数值解法,且将有限元法放在Galerkin有限差分法前边;在重视方法及方法实现的同时,也强调方法的理论基础;此外,本书对有限体积法的叙述也更为完整。各校可根据学时数和专业要求,任选一种作为本科生或研究生教材。主讲教师可根据情况适当删减部分内容,但不宜整章删除,还要重视算法和计算实习。趁这次再版机会,笔者纠正了第一版的某些错误。本书一定还有不少缺点和不当处,望广大师生和读者校正。

内容概要

  《偏微分方程数值解法(第2版)》是根据教育部高等学校数学与统计学教学指导委员会编定的信息与计算科学专业规范及计算数学的发展,在笔者第一版的基础上编写而成。全书包括六章,第一、二章是变分形式和Galerkin有限元法,第三、四章和第五章是有限差分法和有限体积法,第六章是离散化方程的解法。本书是为信息与计算科学专业本科生编写的教材,但也可作为应用数学、力学及某些工程科学专业的教学用书。本书介绍的求解偏微分方程的数值方法是基本的,对于从事科学技术及工程计算的专业人员也有参考价值。

书籍目录

第一部分 边值问题第一章 变分形式Ritz-Galerkin方法1.1 二次函数的极值1.2 两点边值问题1.2.1 弦的平衡1.2.2 Sobolev空间Hm(j)1.2.3 极小位能原理1.2.4 虚功原理1.3 二阶椭圆边值问题1.3.1 Sobolev空间Hm(G)1.3.2 极小位能原理1.3.3 自然边值条件1.3.4 虚功原理1.4 Ritz-Galerkin方法1.5 谱方法1.5.1 三角函数逼近1.5.2 Fourier谱方法1.5.3 拟谱方法(配置法)第二章 有限元空间与椭圆型方程的有限元法2.1 两点边值问题的有限元法2.1.1 从Ritz法出发2.1.2 从Galerkin法出发2.2 线性有限元法的误差估计2.2.1 H1一估计2.2.2 L2一估计对偶论证法2.3 一维高次元空间2.3.1 一次元(线性元)2.3.2 二次元2.3.3 三次元2.4 二维矩形元空间2.4.1 Lagrange型元2.4.2 Hermite型兀2.5 三角形元空间2.5.1 面积坐标及有关公式2.5.2 Lagrange型元2.5.3 Hermite型元2.6 曲边元和等参变换2.7 二阶椭圆型方程的有限元法2.7.1 有限元方程的形成2.7.2 矩阵元素的计算2.7.3 边值条件的处理2.7.4 举例:Poisson方程的有限元法2.7.5 数值例子2.8 收敛阶的估计第三章 椭圆型方程的有限差分法3.1 差分逼近的基本概念3.2 两点边值问题的差分格式3.2.1 直接差分化3.2.2 有限体积法3.2.3 待定系数法与变分差分法3.2.4 边值条件的处理3.3 二阶椭圆型方程的差分格式3.3.1 五点差分格式3.3.2 边值条件的处理3.3.3 极坐标形式的差分格式3.4 极值定理敛速估计3.4.1 一般二阶差分方程3.4.2 极值定理3.4.3 五点格式的敛速估计’3.5 先验估计3.5.1 差分公式3.5.2 若干不等式3.5.3 先验估计3.5.4 解的存在唯一性及敛速估计3.6 有限体积法3.6.1 三角网的差分格式3.6.2 有限体积法3.7 数值例子第四章 离散化方程的解法4.1 基本迭代法4.1.1 离散方程的基本特征4.1.2 一般迭代法4.1.3 SOR法(超松弛法)4.1.4 预处理迭代法4.2 交替方向迭代法4.2.1 二维交替方向迭代4.2.2 三维交替方向迭代4.3 预处理共轭梯度法4.3.1 共轭梯度法4.3.2 预处理共轭梯度法4.4 数值例子4.5 多重网格法4.5.1 二重网格法:差分形式4.5.2 二重网格法:有限元形式4.5.3 多重网格法和套迭代技术4.5.4 推广到多维问题第二部分 初值问题第五章 抛物型方程的差分法和有限元法5.1 最简差分格式5.2 稳定性与收敛性5.2.1 稳定性概念5.2.2 判别稳定性的直接估计法(矩阵法)5.2.3 收敛性和误差估计5.2.4 数值例子5.3 Fourier方法5.4 判别稳定性的代数准则5.5 应用:含对流项的抛物型方程5.6 变系数抛物型方程5.7 分数步长法5.7.1 ADI法5.7.2 预一校法5.7.3 LOD法5.8 数值例子5.9 有限体积法5.1 0有限元法第六章 双曲型方程的有限差分法6.1 波动方程的差分逼近6.1.1 波动方程及其特征6.1.2 显格式6.1.3 稳定性分析6.1.4 隐格式6.1.5 数值例子6.1.6 强迫振动6.2 一阶双曲型方程组6.2.1 线性双曲型方程组特征概念6.2.2 Cauehy问题依存域影响域决定域6.2.3 初边值问题6.2.4 拟线性双曲型方程组6.2.5 一维不定常流6.3 初值问题的差分逼近6.3.1 迎风格式6.3.2 积分守恒差分格式6.3.3 黏性差分格式6.4 初边值问题和对流占优扩散方程的差分逼近6.4.1 初边值问题6.4.2 对流占优扩散方程6.4.3 数值例子6.5 Godunov格式守恒型格式单调格式6.5.1 Godunov格式6.5.2 守恒型格式6.5.3 单调格式6.6 有限体积法名词索引主要参考文献

章节摘录

插图:

编辑推荐

《偏微分方程数值解法(第2版)》是普通高等教育“十一五”国家级规划教材,普通高等学校信息与计算科学专业系列丛书之一。

图书封面

图书标签Tags

评论、评分、阅读与下载


    偏微分方程数值解法 PDF格式下载


用户评论 (总计8条)

 
 

  •   李荣华编写的《微分方程数值解法》和《偏微分方程数值解法》,建议大家一起买来,还算便宜,而且内容也很不错的,买了绝不会后悔。看过了很多数值分析的书,这本书算得上是上乘之作了。
  •   内容很好 看了觉得很不错
  •   与《微分方程数值解》不同,这本偏重与偏微分,两本内容上出入不大
  •   纸张质量不好,而且印刷歪斜
  •   书的纸质很好,打印也很好
  •   拿到的书有较大的损坏,书脊有两处断裂,不知道是发货还是运货过程造成的,一起包装的另一本书没有这么大的损坏。因为是课本急着用又没时间退换。在亚马逊买过很多次书,第一次碰到这种情况。
  •   物美价廉,比较满意,五分
  •   对我很有用,快递也确实很快,总之,我比较满意。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7