出版时间:2010-6 出版社:高等教育出版社 作者:程其襄,张奠宙,魏国强 页数:347
Tag标签:无
前言
本书于1983年问世以来,历经26个春秋,承蒙读者厚爱,一直发行不衰。最近,在听取读者反馈的基础上,我们又进行了一次修改,即为第三版。这次修订重点在实变函数部分,对积分论作了较多更动。以下是几处重要的修改:在第一章“集合”中,突出了集合语言与语言的关系,特别是强化了用集合的无限交并运算来表示函数列的极限过程。这在第四章处理可测函数列极限等定理时十分重要。在第二章“点集”中,增加了康托尔三分集合分形几何学的内容,篇幅很小,旨在反映信息时代的发展,扩充读者的视野。最大的修改是第五章对勒贝格积分的处理。过去我们关注勒贝格积分和黎曼积分的相似之处,考察勒贝格的积分和,以上下积分相等为勒贝格可积,目的是希望读者容易体会其含义。但近来,从非负简单函数出发逐步扩充定义,相应地得到处理积分与极限运算交换的关键定理,这样的一种讲授方法已成为时尚,而且可使篇幅得以压缩,读者也更容易理解。因此,我们也采取了这样的处理方法。在第六章中,将勒贝格积分的部分积分法和新增的变量替换方法一并介绍,并且给出了证明。这两种常用积分方法,是教学中首要讲解的内容,而其证明,则可视教学时数是否充裕来选择。承袭第二版的做法,我们仍在每一章的开始以及适当的地方,用尽量朴素的自然语言向读者提供该部分内容展开的思路,以此来对“形式化”的“冰冷美丽”做一些“火热的思考”。
内容概要
本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。全书共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。 这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。 本书可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
书籍目录
第一篇 实变函数 第一章 集合 1 集合的表示 2 集合的运算 3 对等与基数 4 可数集合 5 不可数集合 第一章习题 第二章 点集 1 度量空间,n维欧氏空间 2 聚点,内点,界点 3 开集,闭集,完备集 4 直线上的开集、闭集及完备集的构造 5 康托尔三分集 第二章习题 第三章 测度论 1 外测度 2 可测集 3 可测集类 4 不可测集 第三章习题 第四章 可测函数 1 可测函数及其性质 2 叶果洛夫(EropoB)定理 3 可测函数的构造 4 依测度收敛 第四章习题 第五章 积分论 1 黎曼积分的局限性,勒贝格积分简介 2 非负简单函数的勒贝格积分 3 非负可测函数的勒贝格积分 4 一般可测函数的勒贝格积分 5 黎曼积分和勒贝格积分 6 勒贝格积分的几何意义·富比尼(Fubini)定理 第五章习题 第六章 微分与不定积分 1 维它利(vitali)定理 2 单调函数的可微性 3 有界变差函数 4 不定积分 5 勒贝格积分的分部积分和变量替换 6 斯蒂尔切斯(stieltjes)积分 7 L-S测度与积分 第六章习题第二篇 泛函分析 第七章 度量空间和赋范线性空间 1 度量空间的进一步例子 2 度量空间中的极限,稠密集,可分空间 3 连续映射 4 柯西(Cauchy)点列和完备度量空间 5 度量空间的完备化 6 压缩映射原理及其应用 7 线性空间 8 赋范线性空间和巴拿赫(Banach)空间 第七章习题 第八章 有界线性算子和连续线性泛函 1 有界线性算子和连续线性泛函 2 有界线性算子空间和共轭空间 3 广义函数 第八章习题 第九章 内积空间和希尔伯特(Hilbert)空间 1 内积空间的基本概念 2 投影定理 3 希尔伯特空间中的规范正交系 4 希尔伯特空间上的连续线性泛函 5 自伴算子、酉算子和正常算子 第九章习题 第十章 巴拿赫空间中的基本定理 1 泛函延拓定理 2 C[a,b]的共轭空间 3 共轭算子 4 纲定理和一致有界性定理 5 强收敛、弱收敛和一致收敛 6 逆算子定理 7 闭图像定理 第十章习题 第十一章 线性算子的谱 1 谱的概念 2 有界线性算子谱的基本性质 3 紧集和全连续算子 4 自伴全连续算子的谱论 5 具对称核的积分方程 第十一章习题附录一 内测度,L测度的另一定义附录二 半序集和佐恩引理附录三 实变函数增补例题参考书目
章节摘录
插图:
编辑推荐
《实变函数与泛函分析基础(第3版)》:普通高等教育“十一五”国家级规划教材。
图书封面
图书标签Tags
无
评论、评分、阅读与下载