测度论

出版时间:2010-7  出版社:高等教育出版社  作者:博根切维  页数:575  
Tag标签:无  

前言

为了更好地借鉴国外数学教育与研究的成功经验,促进我国数学教育与研究事业的发展,提高高等学校数学教育教学质量,本着“为我国热爱数学的青年创造一个较好的学习数学的环境”这一宗旨,天元基金赞助出版“天元基金影印数学丛书”。该丛书主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。为了提高我国数学研究生教学的水平,暂把选书的目标确定在研究生教材上。当然,有的书也可作为高年级本科生教材或参考书,有的书则介于研究生教材与专著之间。欢迎各方专家、读者对本丛书的选题、印刷、销售等工作提出批评和建议。

内容概要

  《测度论(第2卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。第二卷介绍测度论的专题性的内容,特别是与概率论和点集拓扑有关的课题:Borel集,Baire集,Souslin集,拓扑空间上的测度,Kolmogorov定理,Daniell积分,测度的弱收敛,Skorohod表示,Prohorov定理,测度空间上的弱拓扑,Lebesgue-Rohlin空间,Haar测度,条件测度与条件期望,遍历理论等。每章最后都附有非常丰富的补充与练习,其中包含许多有用的知识,例如:Skorohod空间,Blackwell空间,Marik空间,Radon空间,推广的Lusin定理,容量,Choquet表示,Prohorov空间,Young测度等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。

作者简介

作者:(俄罗斯)博根切维(V.I.Bogachev)

书籍目录

Preface to Volume 2 Chapter 6 Borel, Baire and Souslin sets 6.1.Metric and topological spaces 6.2.Borel sets 6.3.Baire sets 6.4.Products of topological spaces 6.5.Countably generated σ-algebras 6.6.Souslin sets and their separation 6.7.Sets in Souslin spaces 6.8.Mappings of Souslin spaces 6.9.Measurable choice theorems 6.10.Supplements and exercises Borel and Baire sets Souslin sets as projections K-analytic and F-analytic sets Blackwell spaces Mappings of Souslin spaces Measurability in normed spaces The Skorohod space Exercises Chapter 7 Measures on topological spaces 7.1.Borel, Baire and Radon measures 7.2.τ-additive measures 7.3.Extensions of measures 7.4.Measures on Souslin spaces 7.5.Perfect measures 7.6.Products of measures 7.7.The Kolmogorov theorem 7.8.The Daniell integral 7.9.Measures as functionals 7.10.The regularity of measures in terms of functionals 7.11.Measures on locally compact spaces 7.12.Measures on linear spaces 7.13.Characteristic functionals 7.14.Supplements and exercises Extensions of product measure Measurability on products Marik spaces Separable measures Diffused and atomless measures Completion regular measures Radon spaces Supports of measures Generalizations of Lusin's theorem Metric outer measures Capacities Covariance operators and means of measures The Choquet representation Convolution Measurable linear functions Convex measures Pointwise convergence Infinite Radon measures Exercises Chapter 8 Weak convergence of measures 8.1.The definition of weak convergence 8.2.Weak convergence of nonnegative measures 8.3.The case of a metric space 8.4.Some properties of weak convergence 8.5.The Skorohod representation 8.6.Weak compactness and the Prohorov theorem 8.7.Weak sequential completeness 8.8.Weak convergence and the Fourier transform 8.9.Spaces of measures with the weak topology 8.10.Supplements and exercises Weak compactness Prohorov spaces The weak sequential completeness of spaces of measures The A-topology Continuous mappings of spaces of measures The separability of spaces of measures Young measures Metrics on spaces of measures Uniformly distributed sequences Setwise convergence of measures Stable convergence and ws-topology Exercises Chapter 9 Transformations of measures and isomorphisms 9.1.Images and preimages of measures 9.2.Isomorphisms of measure spaces 9.3.Isomorphisms of measure algebras 9.4.Lebesgue-Rohlin spaces 9.5.Induced point isomorphisms 9.6.Topologically equivalent measures 9.7.Continuous images of Lebesgue measure 9.8.Connections with extensions of measures 9.9.Absolute continuity of the images of measures 9.10.Shifts of measures along integral curves 9.11.Invariant measures and Haar measures 9.12.Supplements and exercises Projective systems of measures Extremal preimages of measures and uniqueness Existence of atomlees measures Invariant and quasi-invariant measures of transformations Point and Boolean isomorphisms Almost homeomorphisms Measures with given marginal projections The Stonerepresentation The Lyapunov theorem Exercises Chapter 10 Conditional measures and conditional expectations 10.1.Conditional expectations 10.2.Convergence of conditional expectations 10.3.Martingales 10.4.Regular conditional measures 10.5.Liftings and conditional measures 10.6.Disintegrations of measures 10.7.Transition measures 10.8.Measurable partitions 10.9.Ergodic theorems 10.10.Supplements and exercises Independence Disintegrations Strong liftings Zero-one laws Laws of large numbers Gibbs measures Triangular mappings Exercises Bibliographical and Historical Comments References Author Index Subject Index

章节摘录

插图:

编辑推荐

《测度论(第2卷)(影印版)》:天元基金影印数学丛书

图书封面

图书标签Tags

评论、评分、阅读与下载


    测度论 PDF格式下载


用户评论 (总计4条)

 
 

  •   本书上下册一共有2038个参考文献,是我目前讲过参考文献最多的书。
  •   测度论(第2卷)(影印版) 不错的一本书
  •   你的抽象思维要跟的上,而且英文要过关。
  •   文字流畅,定理证明简洁清楚。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7