稀薄气体的数学理论(影印版)

出版时间:2009-2  出版社:高等教育出版社  作者:切尔奇纳尼 编  页数:317  
Tag标签:无  

前言

为了更好地借鉴国外数学教育与研究的成功经验,促进我国数学教育与研究事业的发展,提高高等学校数学教育教学质量,本着“为我国热爱数学的青年创造一个较好的学习数学的环境”这一宗旨,天元基金赞助出版“天元基金影印数学丛书”。该丛书主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。为了提高我国数学研究生教学的水平,暂把选书的目标确定在研究生教材上。当然,有的书也可作为高年级本科生教材或参考书,有的书则介于研究生教材与专著之间。欢迎各方专家、读者对本丛书的选题、印刷、销售等工作提出批评和建议。

内容概要

本书讲述了稀薄气体的数学理论(Boltzmann方程的数学理论)中的三个主要问题直到1994年的理论发展,包括Boltzmann方程是怎样从经典力学推出来的,即Boltzmann方程是怎样从Liouville方程推出来的;Boltzmann方程解的存在性和唯一性问题;Boltzmann方程与流体力学的关系,即Euler方程和Navier-Stokes方程是怎样从Liouvi Lle方程推出来的。另外,本书还介绍了O.Lanford III,DiPerna,P.L.Lions等的出色工作,可作为Boltzmann方程的数学理论的优秀的教材和参考书。

作者简介

编者:(意大利)切尔奇纳尼(Cereignani,C.)

书籍目录

Introduction 1  Historical Introduction    1.1  What is a Gas? From the Billiard Table to Boyle's Law    1.2  Brief History of Kinetic Theory  2  Informal Derivation of the Boltzmann Equation    2.1  The Phase Space and the Liouville Equation    2.2  Boltzmann's Argument in a Modern Perspective    2.3  Molecular Chaos. Critique and Justification    2.4  The BBGKY Hierarchy    2.5  The Boltzmann Hierarchy and Its Relation to the Boltzmann Equation 3  Elementary Properties of the Solutions    3.1  Collision Invariants  33  3.2  The Boltzmann Inequality and the Maxwell Distributions   3.3  The Macroscopic Balance Equations    3.4  The H-Theorem    3.5  Loschmidt's Paradox    3.6  Poincare's Recurrence and Zermelo's Paradox    3.7  Equilibrium States and Maxwellian Distributions    3.8  Hydrodynamical Limit and Other Scalings  4  Rigorous Validity of the Boltzmann Equation    4.1  Significance of the Problem   4.2  Hard-Sphere Dynamics    4.3  Transition to L1. The Liouville Equation and the BBGKY Hierarchy Revisited    4.4  Rigorous Validity of the Boltzmann Equation    4.5  Validity of the Boltzmann Equation for a Rare Cloud of Gas in the Vacuum    4.6  Interpretation    4.7  The Emergence of Irreversibility   4.8  More on the Boltzmann Hierarchy    Appendix 4.A More about Hard-Sphere Dynamics    Appendix 4.B A Rigorous Derivation of the BBGKY Hierarchy   Appendix 4.C Uchiyama's Example  5  Existence and Uniqueness Results   5.1  Preliminary Remarks   5.2  Existence from Validity, and Overview   5.3  A General Global Existence Result    5.4  Generalizations and Other Remarks   Appendix 5.A  6  The Initial Value Problem for the Homogeneous Boltzmann Equation   6.1  An Existence Theorem for a Modified Equation    6.2  Removing the Cutoff: The L1-Theory for the Full Equation   6.3  The L∞-Theory and Classical Solutions    6.4  Long Time Behavior    6.5  Further Developments and Comments    Appendix 6.A    Appendix 6.B    Appendix 6.C  7  Perturbations of Equilibria and Space Homogeneous Solutions  7.1  The Linearized Collision Operator    7.2  The Basic Properties of the Linearized Collision Operator   7.3  Spectral Properties of the Fourier-Transformed, Linearized Boltzmann Equation    7.4  The Asymptotic Behavior of the Solution of the Cauchy Problem for the Linearized Boltzmann Equation    7.5  The Global Existence Theorem for the Nonlinear Equation  7.6  Extensions: The Periodic Case and Problems in One and Two Dimensions    7.7  A Further Extension: Solutions Close to a Space Homogeneous Solution  8  Boundary Conditions    8.1  Introduction    8.2  The Scattering Kernel   8.3  The Accommodation Coefficients   8.4  Mathematical Models    8.5  A Remarkable Inequality  9  Existence Results for Initial-Boundary and Boundary Value Problems   9.1  Preliminary Remarks   9.2  Results on the Traces    9.3  Properties of the Free-Streaming Operator   9.4  Existence in a Vessel with Isothermal Boundary    9.5  Rigorous Proof of the Approach to Equilibrium    9.6  Perturbations of Equilibria   9.7  A Steady Problem    9.8  Stability of the Steady Flow Past an Obstacle    9.9  Concluding Remarks  10  Particle Simulation of the Boltzmann Equation    10.1  Rationale amd Overview    10.2  Low Discrepancy Methods   10.3  Bird's Scheme 11  Hydrodynamical Limits    11.1  A Formal Discussion   11.2  The Hilbert Expansion    11.3  The Entropy Approach to the Hydrodynamical Limit   11.4  The Hydrodynamical Limit for Short Times    11.5  Other Scalings and the Incompressible Navier-Stokes Equations 12  Open Problems and New Directions  Author Index  Subject Index

章节摘录

插图:As early as 1738 Daniel Bernoulli advanced the idea that gases are formedof elastic molecules rushing hither and thither at large speeds, colliding andrebounding according to the laws of elementary mechanics. Of course, thiswas not a completely new idea, because several Greek philosophers assertedthat the molecules of all bodies are in motion even when the body itselfappears to be at rest. The new idea was that the mechanical effect of theimpact of these moving molecules when they strike against a solid is whatis commonly called the pressure of the gas. In fact if we were guided solelyby the atomic hypothesis, we might suppose that the pressure would beproduced by the repulsions of the molecules. Although Bernoulli's schemewas able to account for the elementary properties of gases (compressibility,tendency to expand, rise of temperature in a compression and fall in anexpansion, trend toward uniformity), no definite opinion could be passedon it until it was investigated quantitatively. The actual development of thekinetic theory of gases was, accordingly, accomplished much later, in thenineteenth century.

编辑推荐

《稀薄气体的数学理论(影印版)》由高等教育出版社出版。

图书封面

图书标签Tags

评论、评分、阅读与下载


    稀薄气体的数学理论(影印版) PDF格式下载


用户评论 (总计3条)

 
 

  •   基本是从事Boltzmann方程研究的必备参考书。
  •   很好的书,有关玻尔滋曼理论的
  •   useful enough
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7