出版时间:2009-2 出版社:高等教育出版社 作者:Charles Chapman Pugh
Tag标签:无
内容概要
本书是作者Pugh在伯克利大学讲授数学分析课程30多年之久的基础上编写而成,书中语言表述生动活泼、通俗易懂,引用了很多有价值的例子以及来自Dieudonne,Littlewood和Osserman等几位数学家的评论,还精心挑选了500多个精彩的练习题。本书内容包括实数、拓扑知识初步、实变函数、函数空间、多元微积分、Lebesgue积分理论等,其中多元微积分的讲法较为接近当前数学界常用的语言,将会对我国数学分析的教学产生积极的影响。
书籍目录
1 Real Numbers 1 Preliminaries 2 Cuts 3 Euclidean Space 4 Cardinality 5* Comparing Cardinalities 6* The Skeleton of Calculus Exercises2 A Taste of Topology 1 Metric Space Concepts 2 Compactness 3 Connectedness 4 Coverings 5 Cantor Sets 6* Cantor Set Lore 7* Completion Exercises3 Functions of a Real Variable 1 Differentiation 2 Riemann Integration 3 Series Exercises4 Function Spaces 1 Uniform Convergence and C0[a, b] 2 Power Series 3 Compactness and Equicontinuity in CO 4 Uniform Approximation in Co 5 Contractions and ODE's 6* Analytic Functions 7* Nowhere Differentiable Continuous Functions 8* Spaces of Unbounded Functions Exercises5 Multivariable Calculus 1 Linear Algebra 2 Derivatives 3 Higher derivatives 4 Smoothness Classes 5 Implicit and Inverse Functions 6* The Rank Theorem 7* Lagrange Multipliers 8 Multiple Integrals 9 Differential Forms 10 The General Stokes' Formula 11* The Brouwer Fixed Point Theorem Appendix A: Perorations of Dieudonne Appendix B: The History of Cavalieri's Principle Appendix C: A Short Excursion into the Complex Field Appendix D: Polar Form Appendix E: Determinants Exercises6 Lebesgue Theory 1 Outer measure 2 Measurability 3 Regularity 4 Lebesgue integrals 5 Lebesgue integrals as limits 6 Italian Measure Theory 7 Vitali coverings and density points 8 Lebesgue's Fundamental Theorem of Calculus 9 Lebesgue's Last Theorem Appendix A: Translations and Nonmeasurable sets Appendix B: The Banach-Tarski Paradox Appendix C: Riemann integrals as undergraphs Appendix D: Littlewood's Three Principles Appendix E: Roundness Appendix F: Money Suggested Reading Bibliography ExercisesIndex
图书封面
图书标签Tags
无
评论、评分、阅读与下载