初等几何的著名问题

出版时间:2005-7  出版社:高等教育出版社  作者:[德]Felix Klein  页数:83  译者:沈一兵  
Tag标签:无  

前言

在德国数学教学与自然科学促进协会的Gottingen会议上,F.Klein教授用现代科学研究的观点,讨论了著名的古代三大几何问题(倍立方,三等分角,圆的求积).此举是为了将大学数学研究与中学数学教学更紧密地结合起来.Klein教授在这方面很可能取得了成功,因为该协会对他的讲座给予好评,各教育刊物一致推荐,其法译本和意大利译本也已问世.本书对问题的论述简明易懂,读者甚至不需要微积分知识,本书解答了如下的问题:在什么情况下几何作图是可能的?用什么手段可实现几何作图?什么是超越数?如何证明e和π是超越数?

内容概要

  《初等几何的著名问题》是著名数学家F.Klein 1894年在德国哥廷根的一个讲稿,主要讨论了初等几何的三大著名难题——倍立方、三等分角,圆的求积。当年作者用简明易懂的方式讲解这个课题,引起听众极好的反响。后由德国数学家帮助整理出版,1930年又翻译成英文,一直流传至今。.

作者简介

作者:(德国)克莱因(Klein F.)  译者:沈一兵

书籍目录

引言 实际作图和理论作图. 关于代数形式问题的说明 第一部分 代数表达式的作图可能性 第一章 可用平方根求解的代数方程 1~4.可作图的表达式x的结构 5,6.x的正规形式 7,8.共轭值 9.对应方程F(x)=0 10.其他有理方程f(x)=0 11,12.不可约方程φ(x)=0 13,14.不可约方程的次数——2的幂 第二章 Delian问题和角的三等分 1.用直尺和圆规解Delian问题的不可能性 2.一般方程x3=λ 3.用直尺和圆规三等分角的不可能性 第三章圆的等分 1.问题的历史 2~4.Gauss的素数 第三章圆的等分1.问题的历史2~4.Gauss的素数5.割圆方程6.Gauss引理7,8.割圆方程的不可约性第四章正17边形的几何作图1.问题的代数表述2~4.根形成的周期5,6.周期满足的二次方程7.用直尺和圆规作图的历史说明8,9.正17边形的’Von Staudt的作图  第五章代数作图的一般情形1.折纸2.圆锥曲线的交3.Diocles的蔓叶线4.Nicomedes的蚌线5.机械设备第五章代数作图的一般情形第二部分超越数和圆的求积第一章超越数存在性的Cantor证明1.代数数和超越数的定义2.代数数按高度的排列3.超越数存在性的证明  第二章关于兀的计算和作图的历史概观1.经验时期2.希腊数学家3.从1670年到1770年的现代分析4,5.1770年起评论严格性的复兴第三章数e的超越性第四章数兀的超越性第五章积分仪与兀的几何作图

章节摘录

插图:

编辑推荐

《初等几何的著名问题》内容虽是100多年前的东西,但大师所讲解的方法至今仍让人感到十分漂亮、简洁,对做现代数学很有参考价值。几何三大难题在我国至今还有人在盲目研究,因此新高中教学标准已加入有关内容。《初等几何的著名问题》对于学数学的大学生、中学教师乃至中学生都有很好的阅读价值,也可供广大高校教师和科技人员参考。

图书封面

图书标签Tags

评论、评分、阅读与下载


    初等几何的著名问题 PDF格式下载


用户评论 (总计18条)

 
 

  •   初等几何的难题特点:易懂!难攻!
  •   薄薄的一本,尽管多装订了十几页(还好,没缺);印刷质量不错。
    通过讨论三大几何(作图)难题,给出几何作图可能性的证明,包括超越数的证明。
    证明的叙述很简明,看不太懂。
  •   在大学读书的时候,从图书馆里借过这本书,绝对大师经典,对数学感兴趣的人一定要读,而且要想办法读懂。
  •   发工资了,买几本书看看,不要心疼这几块钱啦。看看大师的作品,很经典的问题。其他网站买不到哦。
  •   这本书很好的,看起来很有意思。
  •   是一本经典书籍。
  •   内容比较深奥,看这本书要有耐心
  •   原以为是很简单的,可是看了才知道挺难的
  •   内容太少,有些已经知道,感觉不值
  •   这是非常经典的一部著作,阐述问题很精辟,一气读完有意犹味尽的感觉!
  •   本以为是中学习题讲解。不料这么深。以后再好好看吧。
  •   很好,很全,印刷很不错,快递很快
  •   书不错,就是略有损坏
  •   质量不错,内容也挺好的。
  •   书很好,但是对读者的要求还是有点高的,没有一定的基础估计很难读懂,但是如果真的喜欢数学,再参考其他的书籍还是很不错的~~思想是灵魂嘛
  •   这本书中间少了二十多页,不知怎么能送到用户手中的?
  •   一接到书,薄得有些出乎意料,本以为有关初等几何方面的讨论会是一厚本的。公式较多,内容是有些难度的,初等问题可不是简单的问题,初中生阅读估计很吃力。
  •   书很好,经典,值得收藏!
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7