出版时间:2012-7 出版社:科学出版社 作者:(美)布莱克 等著 页数:188 字数:244800
内容概要
光波导模式——偏振、耦合与对称(英文版)是一本关于波导模式对称性分析的学术专著。在简要介绍传统导波光学内容的基础上,重点以光波导弱导微扰理论和群论作为理论分析手段,对单模和少模光波导,特别是单芯和多芯光纤的波导模式结构和分类进行了系统的介绍,并讨论了模式对称性分析方法对周期结构、非线性波导和光子晶体等复杂波导结构的应用。
光波导模式——偏振、耦合与对称(英文版)的理论描述简洁,适合于具有较好的电磁理论基础,并对导波光学理论和群论有一定了解的科研人员阅读参考。
作者简介
Richard J. Black博士是光波导模式、光纤传感技术、结构健康监测领域的权威专家。他在光电子学方面拥有多年的学术界和工业界经验,合作出版了250多种出版物和官方技术报告。他是OSA和ASM International的终身会员、IEEE高级会员,同时还是多家技术公司的创始人和首席科学家。
Langis Gagnon博士是蒙特利尔计算技术研究中心(CRIM)视觉与成像方向的首席研究员和团队负责人,同时也是拉瓦尔大学计算机与电气工程学院的兼职教授。他在光学、图像处理、模式识别、基于数学的非线性光学建模等方面已发表150多篇论文。他是SPIE、ACM、IEEE、AIA 和IASTED的会员。
书籍目录
PREFACE xi
ACKNOWLEDGMENTS xiii
Chapter 1 Introduction
1.1 Modes
1.2 Polarization Dependence of Wave Propagation
1.3 Weak-Guidance Approach to Vector Modes
1.4 Group Theory for Waveguides
1.5 Optical Waveguide Modes: A Simple Introduction
1.5.1 Ray Optics Description
1.5.2 Wave Optics Description
1.5.3 Adiabatic Transitions and Coupling
1.6 Outline and Major Results
Chapter 2 Electromagnetic Theory for Anisotropic Media and Weak
Guidance for Longitudinally Invariant Fibers
2.1 Electrically Anisotropic (and Isotropic) Media
2.2 General Wave Equations for Electrically Anisotropic(and
Isotropic) Media
2.3 Translational Invariance and Modes
2.4 Wave Equations for Longitudinally Invariant Media
2.4.1 General Anisotropic Media
2.4.2 Anisotropic Media with z-Aligned Principal Axis
2.4.3 "Diagonal" Anisotropies
2.5 Transverse Field Vector Wave Equation for Isotropic Media
2.6 Scalar Wave Equation
2.7 Weak-Guidance Expansion for Isotropic Media
2.8 Polarization-Dependent Mode Splitting and Field
Corrections
2.8.1 First-Order Eigenvalue Correction
2.8.2 First-Order Field and Higher-Order Corrections
2.8.3 Simplifications Due to Symmetry
2.9 Reciprocity Relations for Isotropic Media
2.10 Physical Properties of Waveguide Modes
Chapter 3 Circular Isotropic Longitudinally Invariant Fibers
3.1 Summary of Modal Representations
3.1.1 Scalar and Pseudo-Vector Mode Sets
3.1.2 True Weak-Guidance Vector Mode Set Constructions Using
Pseudo-Modes
3.1.3 Pictorial Representation and Notation Details
3.2 Symmetry Concepts for Circular Fibers: Scalar Mode Fields and
Degeneracies
3.2.1 Geometrical Symmetry: C
3.2.2 Scalar Wave Equation Symmetry: CS
3.2.3 Scalar Modes: Basis Functions of Irreps of CSv
3.2.4 Symmetry Tutorial: Scalar Mode Transformations
3.3 Vector Mode Field Construction and Degeneracies via
Symmetry
3.3.1 Vector Field
3.3.2 Polarization Vector Symmetry Group: C
3.3.3 Zeroth-Order Vector Wave Equation Symmetry:Cs c
3.3.4 Pseudo-Vector Modes: Basis Functions of Irreps of CSv
Cv
3.3.5 Full Vector Wave Equation Symmetry:CSv Cv CLv
3.3.6 True Vector Modes: Qualitative Features via CSv CPvD
CIv
3.3.7 True Vector Modes via Pseudo-Modes: Basis Functions ofCSv Cv
CIv
3.4 Polarization-Dependent Level-Splitting
3.4.1 First-Order Eigenvalue Corrections
3.4.2 Radial Profile-Dependent Polarization Splitting
3.4.3 Special Degeneracies and Shifts for Particular Radial
Dependence of Profile
3.4.4 Physical Effects
Chapter 4 Azimuthal Symmetry Breaking
4.1 Principles
4.1.1 Branching Rules
4.1.2 Anticrossing and Mode Form Transitions
4.2 C2v Symmetry: Elliptical (or Rectangular) Guides:Illustration
of Method
4.2.1 Wave Equation Symmetries and Mode-Irrep Association
4.2.2 Mode Splittings
4.2.3 Vector Mode Form Transformations for Competing
Perturbations
4.3 CBv Symmetry: Equilateral Triangular Deformations
4.4 C4v Symmetry: Square Deformations
4.4.1 Irreps and Branching Rules
4.4.2 Mode Splitting and Transition Consequences
4.4.3 Square Fiber Modes and Extra Degeneracies
4.5 Csv Symmetry: Pentagonal Deformations
4.5.1 Irreps and Branching Rules
4.5.2 Mode Splitting and Transition Consequences
4.6 C6 Symmetry: Hexagonal Deformations
4.6.1 Irreps and Branching Rules
4.6.2 Mode Splitting and Transition Consequences
4.7 Level Splitting Quantification and Field Corrections
Chapter 5 Birefringence: Linear, Radial, and Circular
5.1 Linear Birefringence
5.1.1 Wave Equations: Longitudinal Invariance
5.1.2 Mode Transitions: Circular Symmetry
5.1.3 Field Component Coupling
5.1.4 Splitting by xy of lsotropic Fiber Vector Modes Dominated by
a-Splitting
5.1.5 Correspondence between Isotropic "True" Modes and
Birefringent LP Modes
5.2 Radial Birefringence
5.2.1 Wave Equations: Longitudinal Invariance
5.2.2 Mode Transitions for Circular Symmetry
5.3 Circular Birefringence
5.3.1 Wave Equation
5.3.2 Symmetry and Mode Splittings
Chapter 6 Multicore Fibers and Multifiber Couplers
6.1 Multilightguide Structures with Discrete Rotational
Symmetry
6.1.1 Global Cnv Rotation-Reflection Symmetric Structures:Isotropic
Materials
6.1.2 Global Cnv Symmetry: Material and Form Birefringence
6.1.3 Global Cn Symmetric Structures
6.2 General Supermode Symmetry Analysis
6.2.1 Propagation Constant Degeneracies
6.2.2 Basis Functions for General Field Construction
6.3 Scalar Supermode Fields
6.3.1 Combinations of Fundamental Individual Core Modes
6.3.2 Combinations of Other Nondegenerate Individual Core
Modes
6.3.3 Combinations of Degenerate Individual Core Modes
6.4 Vector Supermode Fields
6.4.1 Two Construction Methods
6.4.2 Isotropic Cores: Fundamental Mode Combination
Supermodes
6.4.3 Isotropic Cores: Higher-Order Mode Combination
Supermodes
6.4.4 Anisotropic Cores: Discrete Global Radial Birefringence
6.4.5 Other Anisotropic Structures: Global Linear and Circular
Birefringence
6.5 General Numerical Solutions and Field Approximation
Improvements
6.5.1 SALCs as Basis Functions in General Expansion
6.5.2 Variational Approach
6.5.3 Approximate SALC Expansions
6.5.4 SALC = Supermode Field with Numerical Evaluation of Sector
Field Function
6.5.5 Harmonic Expansions for Step Profile Cores
6.5.6 Example of Physical Interpretation of Harmonic Expansion for
the Supermodes
6.5.7 Modal Expansions
6.5.8 Relation of Modal and Harmonic Expansions to SALC
Expansions
6.5.9 Finite Claddings and Cladding Modes
6.6 Propagation Constant Splitting: Quantification
6.6.1 Scalar Supermode Propagation Constant Corrections
6.6.2 Vector Supermode Propagation Constant Corrections
6.7 Power Transfer Characteristics
6.7.1 Scalar Supermode Beating
6.7.2 Polarization Rotation
Chapter 7 Conclusions and Extensions
7.1 Summary
7.2 Periodic Waveguides
7.3 Symmetry Analysis of Nonlinear Waveguides and Self-Guided
Waves
7.4 Developments in the 1990s and Early Twenty-First Century
7.5 Photonic Computer-Aided Design (CAD) Software
7.6 Photonic Crystals and Quasi Crystals
7.7 Microstructured, Photonic Crystal, or Holey Optical
Fibers
7.8 Fiber Bragg Gratings
7.8.1 General FBGs for Fiber Mode Conversion
7.8.2 (Short-Period) Reflection Gratings for Single-Mode
Fibers
7.8.3 (Long-Period) Mode Conversion Transmission Gratings
7.8.4 Example: LPol--LPn Mode-Converting Transmission FBGs for
Two-Mode Fibers (TMFs)
7.8.5 Example: LPol(--LPo2 Mode-Converting Transmission FBGs
Appendix Group Representation Theory
A.1 Preliminaries: Notation, Groups, and Matrix
Representations
of Them
A.1.1 Induced Transformations on Scalar Functions
A.1.2 Eigenvalue Problems: Invariance and Degeneracies
A.1.3 Group Representations
A.1.4 Matrix Irreducible Matrix Representations
A.1.5 Irrep Basis Functions
A.1.6 Notation Conventions
A.2 Rotation-Reflection Groups
A.2.1 Symmetry Operations and Group Definitions
A.2.2 Irreps for C and Cnv
A.2.3 Irrep Notation
A.3 Reducible Representations and Branching Rule
Coefficients via Characters
A.3.1 Example Branching Rule for Cv D C2v
A.3.2 Branching Rule Coefficients via Characters
A.4 Clebsch-Gordan Coefficient for Changing Basis
A.5 Vector Field Transformation
REFERENCES
INDEX
图书封面
评论、评分、阅读与下载