出版时间:2012-7 出版社:科学出版社 作者:戴维 L.安德鲁斯 页数:490 字数:821250
内容概要
近年,纳米技术及其基础科学以前所未有的速度增长与发展。基于此,纳米科学与技术大全3:纳米结构表面(导读版)旨在为读者们呈现一本动态的、权威的和真正能获取有效信息的参考著作,力求反映此学科领域全面而广阔的发展状况。
此书共有5卷,由国际专家组写作而成,内容涉及材料科学、物理学、生命科学、化学等领域;每篇文章的写作都兼具学术性、批判性与可读性,内容深入浅出,前后呼应,是一本跨学科领域研究者们不可或缺的有价值的参考资料。
纳米科学与技术大全3:纳米结构表面(导读版)适合化学、物理学、材料科学、生物学、工程学等领域的研究生及科研人员参考,对于纳米研究实验室、学术机构,涉及纳米和生物材料、材料科学等方面的专业组织、公司、企业等也是不可多得的参考资料。
作者简介
Gary P.Wiederrecht、John C.Polanyi、Alexandre Bouhelier、Teri W.Odom
书籍目录
3.01 负载型金纳米颗粒催化剂3.01.1 Preparation of Gold Catalysts3.01.2 Catalytic CO Oxidation3.01.2.1 Effect of Preparation Method3.01.2.2 Effect of Particle Size and Support3.01.2.3 Reaction Mechanism3.01.3 Catalytic Oxidation of Organic Compounds3.01.4 Catalytic Reduction of Organic Compounds3.01.5 Gold/Semiconductor Photocatalysts3.01.6 Gold Photocatalysts3.01.7 ConclusionReferences3.02 纳米结构的受控组装3.02.1 Introduction3.02.2 Fundamentals of Directing Nanoscale Assembly at Surfaces3.02.2.1 Noncovalent Interactions between Molecules3.02.2.1.1 Hydrogen bonding3.02.2.1.2 Metal-organic coordination3.02.2.2 Molecule-Surface Interactions3.02.2.2.1 Common surfaces for studies of molecular assembly3.02.3 Patterned Bonding between Molecules and Surfaces3.02.3.1 Chemical Chain Reactions3.02.3.2 Selectively Patterned Surfaces3.02.4 Guiding Supramolecular Assembly3.02.4.1 Hydrogen-Bonded Architectures3.02.4.1.1 Overview3.02.4.1.2 Basic geometries in hydrogen-bonded structures3.02.4.2 Metal-Organic Coordination3.02.5 Templated Physisorption: Molecular Organization via Self-Assembled Inclusion Networks3.02.5.1 Designing Host?Guest Networks at Surfaces3.02.5.2 Patterning Arrays of Fullerenes3.02.5.3 Patterning Other Molecules3.02.6 Covalently Bonded Structures:Surface-Confined Polymerization3.02.6.1 Polymer Lines3.02.6.1.1 UV light and STM tip-induced polymerization of diacetylenes3.02.6.1.2 Electrochemical formation of polythiophenes3.02.6.1.3 Addition polymerization of carbenes3.02.6.1.4 Polyphenylene lines via Ulmann dehalogenation3.02.6.2 Two-Dimensional Polymers3.02.6.2.1 Porphyrin networks3.02.6.2.2 Condensation polymerization via dehydration3.02.7 Conclusions and OutlookReferences3.03 有序纳米颗粒超结构的生物介导组装3.03.1 Introduction3.03.2 Synthesis and Biofunctionalization of Nanoparticles3.03.2.1 Wet Chemistry Synthesis of Nanoparticles3.03.2.2 Functionalization of Nanoparticles with Biomolecules3.03.2.2.1 N:1 functionalized nanoparticles3.03.2.2.2 1:1 functionalized nanoparticles3.03.2.2.3 Anisotropically functionalized nanoparticles3.03.3 Interactions between Biofunctionalized Nanoparticles3.03.3.1 Specific Chemical Bonding Interactions3.03.3.2 Nonspecific Physical Bonding Interactions3.03.4 Assembly of Ordered Nanoparticle Superstructures3.03.4.1 Nanoparticle Molecules3.03.4.2 Nanoparticle Superlattices3.03.4.2.1 Programmable DNA-based assembly3.03.4.2.2 Nonspecific DNA-based assembly3.03.4.3 Assembly of Nanoparticles by Other Biomolecules3.03.5 Characterization3.03.5.1 Microscopy3.03.5.2 Gel Electrophoresis3.03.5.3 Optical Spectroscopy3.03.5.4 Small-Angle X-ray Scattering3.03.5.5 Atomic Force Microscopy3.03.6 Summary and OutlookReferences3.04 表面上的手性分子3.04.1 Introduction3.04.1.1 Definition of Chirality3.04.1.2 Nomenclature of Chirality-the R,S Convention3.04.2 Surface Chirality following Molecular Adsorption3.04.2.1 Achiral Molecules on Achiral Surfaces3.04.2.2 Chiral Molecules on Achiral Surfaces3.04.2.2.1 Adsorption without substrate modification3.04.2.2.2 Chiral substrate modification3.04.2.3 Chiral Amplification and Recognition3.04.2.3.1 Chiral amplification in two dimensions3.04.2.3.2 Chiral recognition3.04.2.4 Chiral Molecules on Chiral Surfaces3.04.2.4.1 Chiral substrate geometries3.04.2.4.2 Adsorption of chiral molecules on chiral surfaces3.04.3 Kinetics of Desorption Processes3.04.3.1 Achiral Surfaces3.04.3.2 Chiral Surfaces3.04.3.3 Effect of Chiral Templating/Modification on Achiral Surfaces3.04.4 Chiral Heterogeneous Catalysis3.04.5 ConclusionsReferences3.05 金属纳米结构光学3.05.1 Introduction3.05.1.1 Scope of the Chapter3.05.2 Surface Plasmon Polaritonic Crystals3.05.2.1 Optical Properties3.05.2.1.1 Smooth film surface plasmon polaritons3.05.2.1.2 Surface plasmon polaritonic crystals3.05.2.1.3 Plasmonic cavities as an SPP crystal basis3.05.2.1.4 Mechanisms of enhanced optical transmission(EOT)through SPCs3.05.2.2 Sample Fabrication and Experimental Configuration3.05.2.3 Polarization Properties of SPCs3.05.2.4 Dynamic Control of the Optical Properties of Plasmonic Crystals3.05.2.4.1 Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal3.05.2.4.2 Magneto-optical control of surface plasmon polariton Bloch modes3.05.2.4.3 Light-controlled optical transmission through nonlinear surface plasmonic crystals3.05.3 Metallic Nanorod Arrays3.05.3.1 Plasmonic Nanorod Assembly3.05.3.2 Optical Properties3.05.3.2.1 Eigenmodes of nanorod arrays:spectral properties3.05.3.2.2 Eigenmodes of nanorod arrays:spatial field distribution3.05.3.3 Assembly of Core-Shell Nanorods3.05.3.4 Applications3.05.3.4.1 Tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies3.05.3.4.2 Refractive index sensing3.05.3.4.3 Electrically switchable nonreciprocal transmission3.05.3.4.4 Light-controlled transmission through nanorod arrays embedded in a nonlinear dielectric3.05.4 ConclusionReferences3.06 表面纳米光子学理论3.06.1 Introduction3.06.2 Background3.06.2.1 Basic Electromagnetic Theory3.06.2.2 Metal Films,Apertures,and Periodic Structures3.06.3 Theoretical and Computational Methods3.06.3.1 The Finite-Difference Time-Domain(FDTD)Method3.06.3.2 The Rigorous Coupled-Wave Analysis(RCWA)3.06.3.3 The Modal Expansion Method3.06.4 Isolated Apertures in Metal Films3.06.4.1 Isolated Slits3.06.4.2 Isolated Holes3.06.5 Periodic Nanostructured Metal Films3.06.5.1 Hole Arrays3.06.5.2 Pillar Arrays3.06.5.3 Other Periodic Systems3.06.6 Summary and OutlookReferences3.07 高性能LED的构建及优化:光子晶体及光子带隙结构的光提取及发射控制3.07.1 Introduction3.07.2 Basic Background3.07.3 Large Band-Gap Nitride LEDs for the Green-Blue to Ultraviolet Spectral Range3.07.4 Contact Formation3.07.5 PhC Structures:The Royal Road to Enhanced Light Extraction from LEDs3.07.6 The Grating Output Coupler:A Simplified Approach to PhC Light Extraction3.07.6.1 Analysis of the Waveguide Grating Coupler3.07.7 White LEDs3.07.8 ConclusionsReferences3.08 液晶纳米结构光学超材料3.08.1 Introduction3.08.1.1 Electromagnetic Fundamentals of Metamaterials3.08.1.2 Complex Refractive Index of Lossy Metamaterials3.08.1.3 Refractive Index of a General Medium3.08.1.4 Phase-Space **** Description of the Complex Refractive Index3.08.1.5 Reflection and Transmission Properties at the Air-Metamaterial Interface3.08.2 Review of Liquid-Crystal Optical Physics3.08.2.1 General Overview3.08.2.2 An Example of Direct Current+Optical Field Tuning of LC Index3.08.3 LC Nanodispersed Metamaterials3.08.3.1 Dispersion of Nanoparticles in Aligned NLCs3.08.3.1.1 Solid silver nanospheres3.08.3.1.2 Silver-coated silica nanoshells3.08.3.1.3 Polaritonic-silver core-shell spheres3.08.3.2 Optical Properties of Metamaterials:Au versus Ag3.08.3.3 Enhancement and Control of Dielectric Anisotropy and Absorption3.08.3.4 Shifting the Frequency Response3.08.3.5 Reduction of Losses with a Gain Medium3.08.3.6 Some Experimental Results3.08.4 Periodic Nanostructures Containing LCs3.08.4.1 LC-Based Tunable FSSs3.08.4.2 LC-Infiltrated PCs3.08.5 ConclusionReferences3.09 纳米结构与表面增强拉曼光谱3.09.1 Introduction3.09.2 Localized Surface Plasmon Resonance Spectroscopy3.09.2.1 Theory3.09.2.1.1 Solution to Maxwell?s equations:Mie theory3.09.2.1.2 Relationship between the dielectric function and nanoparticle extinction3.09.2.1.3 Electric-field decay3.09.2.1.4 Discrete dipole approximation for nonspherical particles3.09.2.1.5 Experimental methods3.09.2.2 Nanofabrication3.09.2.2.1 Chemical syntheses3.09.2.2.2 Laser ablation3.09.2.2.3 Nanostructured films3.09.2.2.4 Lithographic techniques3.09.2.3 Characteristics of the LSPR3.09.2.3.1 Dependence on nanoparticle size and shape3.09.2.3.2 Sensitivity to external environment3.09.2.3.3 Distance dependence3.09.2.3.4 Coupling among nanoparticles3.09.2.4 Functionalization and Stabilization of Nanoparticles3.09.2.4.1 Thermal stability3.09.2.4.2 Stability to laser excitation3.09.2.4.3 Solvent stability3.09.3 Surface-Enhanced Raman Spectroscopy3.09.3.1 Background3.09.3.1.1 Chemical enhancement mechanism of SERS3.09.3.1.2 Electromagnetic enhancement mechanism of SERS3.09.3.1.3 Calculating SERS enhancement factors3.09.3.2 Experimental Consequences of the EM Mechansim3.09.3.2.1 Distance dependence of SERS3.09.3.2.2 Excitation-wavelength dependence of SERS3.09.3.2.3 Excitation-wavelength dependence of SERRS3.09.3.3 Single-Molecule SERS3.09.3.3.1 A frequency domain existence proof of SMSERS3.09.3.3.2 Surface dynamics in SMSERS3.09.3.3.3 Structure and enhancement factors of SMSERS hot spots3.09.3.3.4 Excitation-wavelength dependence of SMSERS3.09.3.4 SERS Sensing Applications3.09.3.4.1 In vivo glucose sensing by SERS3.09.3.4.2 Application of SERS to art conservation3.09.3.4.3 SERS for chemical and biological warfare agent detection3.09.4 Future Directions3.09.4.1 New Plasmonic Materials for SERS3.09.4.2 Novel Nanostructures3.09.4.3 Tip-Enhanced Raman Spectroscopy3.09.5 ConclusionReferences3.10 纳米结构超导体的有效磁通钉扎3.10.1 Introduction3.10.2 Vortex Physics3.10.3 Artificial Vortex Pinning:Defect Classification3.10.4 APCs in YBCO Thin Films and CCs3.10.4.1 Vacuum Deposition Methodologies3.10.4.1.1 Thin-film growth by PLD:Microstructure and pinning3.10.4.1.2 APC in YBCO films: Surface decoration by nanodots3.10.4.1.3 APC in YBCO films and conductors:Self-organized nanocomposites3.10.5 Chemical Deposition Methodologies3.10.5.1 Thin-Film Growth by Chemical Routes:Microstructure and Pinning3.10.5.2 APCs in YBCO Films: Nanodots Decoration3.10.5.3 APCs in YBCO Films and Conductors:Nanocomposites3.10.6 Conclusions and Future PerspectivesReferences3.11 纳米结构的倍频效应3.11.1 Introduction3.11.2 Fundamentals of Second Harmonic Generation3.11.3 Particles from Noncentrosymmetrical Material3.11.3.1 General Theory3.11.3.2 Volume Contribution3.11.3.3 Surface Contribution3.11.3.4 Magnetic Particles3.11.4 Particles from a Centrosymmetrical Material3.11.4.1 Particles with Noncentrosymmetrical Shape3.11.4.2 Particles with Centosymmetrical Shape3.11.5 Metallic Particles3.11.5.1 Theoretical Approach3.11.5.2 Origin of the SH Response3.11.5.3 Resonance Enhancement3.11.5.4 Aggregation3.11.5.5 Other Metallic Nanostructures3.11.6 Arrays of Metallic Particles3.11.6.1 Regular Arrays of Metallic Nanoparticles3.11.6.2 Random Metallic Structures3.11.6.3 ConclusionsReferences3.12 纳米结构表面的摩擦学3.12.1 Introduction3.12.2 Thin Lubricating Films with Ordered Molecular Structures3.12.2.1 Challenges to the Lubrication in Microscopic Systems3.12.2.2. Preparation of LB Films and SAMs3.12.2.3 Tribological Properties of Ordered Molecular Films3.12.2.3.1 Dependence on load and velocity3.12.2.3.2 Effects of chain length and functional group3.12.2.3.3 Improvements of wear resistance3.12.2.3.4 Applications and patterned molecule films3.12.2.4 Thin-Film Lubrication and Confined Liquids3.12.2.4.1 Rheological properties of confined liquids3.12.2.4.2 Thin-film lubrication3.12.3 Tribology of Biological Systems3.12.4 Tribology of Patterned or Textured Surfaces3.12.4.1 Surface Texturing and Tribological Applications3.12.4.1.1 Techniques of LST3.12.4.1.2 Study on tribological properties of textured surfaces3.12.4.1.3 Key applications3.12.4.2 Stiction and Adhesion on Textured Surfaces3.12.4.2.1 Stiction and adhesion at head/disk interfaces3.12.4.2.2 Surface texture in MEMS applications3.12.4.2.3 Understanding adhesion on structured surfaces3.12.4.3 Wettability on Nanostructured Surfaces3.12.4.3.1 Wettability and effects of surface roughness3.12.4.3.2 Creating superhydrophobicity through surface structure3.12.4.3.3 Applications to fluid drag reduction3.12.5 Tribology of Nanocomposites3.12.5.1 Tribology of Polymer-Based Nanocomposites3.12.5.2 Tribology of Superhard Nanocomposite Coatings3.12.5.3 Self-Lubricating Nanocomposite CoatingsReferences3.13 纳米摩擦学及润滑材料的纳米级涂层3.13.1 Introduction3.13.2 Carbon-Based Nanolubricants3.13.3 Lubricant Additives in Boundary Lubrication3.13.4 Carbonaceous Films3.13.4.1 C60 Film3.13.4.2 CNT Film3.13.4.3 Tribology of OLC3.13.4.3.1 Isolated OLC3.13.4.3.2 OLC film3.13.5 Summary and ConclusionsReferences3.14 碳纳米材料及无机纳米材料的功能化和溶液化3.14.1 Introduction3.14.2 Functionalization and Solubilization of Carbon Nanostructures3.14.2.1 Fullerene(C60)3.14.2.2 Nanodiamond3.14.2.2.1 Covalent functionalization3.14.2.2.2 Noncovalent functionalization3.14.2.3 Carbon Nano-Onions3.14.2.4 Carbon Nanotubes3.14.2.4.1 Covalent functionalization3.14.2.4.2 Defect functionalization3.14.2.4.3 Noncovalent functionalization3.14.2.4.4 Endrohedral filling3.14.2.5 Graphene3.14.2.5.1 Covalent functionalization3.14.2.5.2 Noncovalent functionalization3.14.2.6 Functionalization of Various Carbon Nanostructures:A Comparison3.14.2.7 Comparison of Functionalization Methods3.14.3 Functionalization and Solubilization of Inorganic Nanostructures3.14.3.1 Metal Nanostructures3.14.3.1.1 In situ functionalization3.14.3.1.2 Postsynthesis functionalization3.14.3.1.3 Functionalization through biphasic synthesis3.14.3.1.4 Functionalization using fluorous chemistry3.14.3.1.5 Functionalization using click chemistry3.14.3.1.6 Other functionalization methods3.14.3.2 Metal-Oxide Nanostructures3.14.3.2.1 In situ functionalization3.14.3.2.2 Postsynthesis functionalization3.14.3.2.3 Silane-induced functionalization3.14.3.2.4 Functionalization using polymers3.14.3.3 Metal-Chalcogenide Nanostructures3.14.3.3.1 In situ functionalization3.14.3.3.2 Postsynthesis functionalization3.14.3.3.3 Functionalization using fluorous chemistry3.14.3.3.4 Silane-induced functionalization3.14.3.3.5 Functionalization using polymers3.14.3.4 Metal Nitride Nanostructures3.14.4 ConclusionsReferences
图书封面
评论、评分、阅读与下载