出版时间:2012-6 出版社:科学出版社 作者:巴利伽 页数:1065 字数:1378000
Tag标签:无
内容概要
《功率半导体器件基础(英文版)》作者是功率半导体器件领域的著名专家,IGBT器件发明人之一。《功率半导体器件基础(英文版)》结合作者多年的实践经验,深入讨论了半导体功率器件的物理模型、工作原理、设计原则和应用特性,不仅详细介绍了硅基器件,还讨论了碳化硅器件的特性与设计要求。主要内容包括材料特性与输运物理、击穿电压、肖特基整流器、P-i-N整流器、功率MOSFET器件、双极型晶体管、晶闸管、IGBT器件等。
《功率半导体器件基础(英文版)》可作为微电子、电力电子等相关领域科研人员、工程技术人员的参考书,也可作为相关专业高年级本科生、研究生的教材。
作者简介
无
书籍目录
PrefaceChapter 1 Introduction1.1 Ideal and Typical Power Switching Waveforms1.2 Ideal and Typical Power Device Characteristics1.3 Unipolar Power Devices1.4 Bipolar Power Devices1.5 MOS-Bipolar Power Devices1.6 Ideal Drift Region for Unipolar Power Devices1.7 Charge-Coupled Structures:Ideal Specific On-Resistance1.8 SummaryProblemsReferencesChapter 2 Material Properties and Transport Physics2.1 Fundamental Properties2.1.1 Intrinsic Carrier Concentration2.1.2 Bandgap Narrowing2.1.3 Built-in Potential2.1.4 Zero-Bias Depletion Width2.1.5 Impact Ionization Coefficients2.1.6 Carrier Mobility2.2 Resistivity2.2.1 Intrinsic Resistivity2.2.2 Extrinsic Resistivity2.2.3 Neutron Transmutation Doping2.3 Recombination Lifetime2.3.1 Shockley-Read-Hall Recombination2.3.2 Low-Level Lifetime2.3.3 Space-Charge Generation Lifetime2.3.4 Recombination Level Optimization2.3.5 Lifetime Control2.3.6 Auger Recombination2.4 Ohmic Contacts2.5 SummaryProblemsReferencesChapter 3 Breakdown Voltage3.1 Avalanche Breakdown3.1.1 Power Law Approximations for the Impact Ionization Coefficients3.1.2 Multiplication Coefficient3.2 Abrupt One-Dimensional Diode3.3 Ideal Specific On-Resistance3.4 Abrupt Punch-Through Diode3.5 Linearly Graded Junction Diode3.6 Edge Terminations3.6.1 Planar Junction Termination3.6.2 Planar Junction with Floating Field Ring3.6.3 Planar Junction with Multiple Floating Field Rings3.6.4 Planar Junction with Field Plate3.6.5 Planar Junction with Field Plates and Field Rings3.6.6 Bevel Edge Terminations3.6.7 Etch Terminations3.6.8 Junction Termination Extension3.7 Open-Base Transistor Breakdown3.7.1 Composite Bevel Termination3.7.2 Double-Positive Bevel Termination3.8 Surface Passivation3.9 SummaryProblemsReferencesChapter 4 Schottky Rectifiers4.1 Power Schottky Rectifier Structure4.2 Metal-Semiconductor Contact4.3 Forward Conduction4.4 Reverse Blocking4.4.1 Leakage Current4.4.2 Schottky Barrier Lowering4.4.3 Prebreakdown Avalanche Multiplication4.4.4 Silicon Carbide Rectifiers4.5 Device Capacitance4.6 Thermal Considerations4.7 Fundamental Tradeoff Analysis4.8 Device Technology4.9 Barrier Height Adjustment4.10 Edge Terminations4.11 SummaryProblemsReferencesChapter 5 P-i-N Rectifiers5.1 One-Dimensional Structure5.1.1 Recombination Current5.1.2 Low-Level Injection Current5.1.3 High-Level Injection Current5.1.4 Injection into the End Regions5.1.5 Carrier-Carrier Scattering Effect5.1.6 Auger Recombination Effect5.1.7 Forward Conduction Characteristics5.2 Silicon Carbide P-i-N Rectifiers5.3 Reverse Blocking5.4 Switching Performance5.4.1 Forward Recovery5.4.2 Reverse Recovery5.5 P-i-N Rectifier Structure with Buffer Layer5.6 Nonpunch-Through P-i-N Rectifier Structure5.7 P-i-N Rectifier Tradeoff Curves5.8 SummaryProblemsReferencesChapter 6 Power MOSFETs6.1 Ideal Specific On-Resistance6.2 Device Cell Structure and Operation6.2.1 The V-MOSFET Structure6.2.2 The VD-MOSFET Structure6.2.3 The U-MOSFET Structure6.3 Basic Device Characteristics6.4 Blocking Voltage6.4.1 Impact of Edge Termination6.4.2 Impact of Graded Doping Profile6.4.3 Impact of Parasitic Bipolar Transistor6.4.4 Impact of Cell Pitch6.4.5 Impact of Gate Shape6.4.6 Impact of Cell Surface Topology6.5 Forward Conduction Characteristics6.5.1 MOS Interface Physics6.5.2 MOS Surface Charge Analysis6.5.3 Maximum Depletion Width6.5.4 Threshold Voltage6.5.5 Channel Resistance6.6 Power VD-MOSFET On-Resistance6.6.1 Source Contact Resistance6.6.2 Source Region Resistance6.6.3 Channel Resistance6.6.4 Accumulation Resistance6.6.5 JFET Resistance6.6.6 Drift Region Resistance6.6.7 N+ Substrate Resistance6.6.8 Drain Contact Resistance6.6.9 Total On-Resistance6.7 Power VD-MOSFET Cell Optimization6.7.1 Optimization of Gate Electrode Width6.7.2 Impact of Breakdown Voltage6.7.3 Impact of Design Rules6.7.4 Impact of Cell Topology6.8 Power U-MOSFET On-Resistance6.8.1 Source Contact Resistance6.8.2 Source Region Resistance6.8.3 Channel Resistance6.8.4 Accumulation Resistance6.8.5 Drift Region Resistance6.8.6 N+ Substrate Resistance6.8.7 Drain Contact Resistance6.8.8 Total On-Resistance6.9 Power U-MOSFET Cell Optimization6.9.1 Orthogonal P-Base Contact Structure6.9.2 Impact of Breakdown Voltage6.9.3 Ruggedness Improvement6.10 Square-Law Transfer Characteristics6.11 Superlinear Transfer Characteristics6.12 Output Characteristics6.13 Device Capacitances6.13.1 Basic MOS Capacitance6.13.2 Power VD-MOSFET Structure Capacitances6.13.3 Power U-MOSFET Structure Capacitances6.13.4 Equivalent Circuit6.14 Gate Charge6.14.1 Charge Extraction6.14.2 Voltage and Current Dependence6.14.3 VD-MOSFET vs. U-MOSFET Structure6.14.4 Impact of VD-MOSFET and U-MOSFET Cell Pitch6.15 Optimization for High Frequency Operation6.15.1 Input Switching Power Loss6.15.2 Output Switching Power Loss6.15.3 Gate Propagation Delay6.16 Switching Characteristics6.16.1 Turn-On Transient6.16.2 Turn-Off Transient6.16.3 Switching Power Losses6.16.4 [dV/dt]Capability6.17 Safe Operating Area6.17.1 Bipolar Second Breakdown6.17.2 MOS Second Breakdown6.18 Integral Body Diode6.18.1 Reverse Recovery Enhancement6.18.2 Impact of Parasitic Bipolar Transistor6.19 High-Temperature Characteristics6.19.1 Threshold Voltage6.19.2 On-Resistance6.19.3 Saturation Transconductance6.20 Complementary Devices6.20.1 The p-Channel Structure6.20.2 On-Resistance6.20.3 Deep-Trench Structure6.21 Silicon Power MOSFET Process Technology6.21.1 Planar VD-MOSFET Process6.21.2 Trench U-MOSFET Process6.22 Silicon Carbide Devices6.22.1 The Baliga-Pair Configuration6.22.2 Planar Power MOSFET Structure6.22.3 Shielded Planar Power MOSFET Structures6.22.4 Shielded Trench-Gate Power MOSFET Structure6.23 SummaryProblemsReferencesChapter 7 Bipolar Junction Transistors7.1 Power Bipolar Junction Transistor Structure7.2 Basic Operating Principles7.3 Static Blocking Characteristics7.3.1 Open-Emitter Breakdown Voltage7.3.2 Open-Base Breakdown Voltage7.3.3 Shorted Base-Emitter Operation7.4 Current Gain7.4.1 Emitter Injection Efficiency7.4.2 Emitter Injection Efficiency with Recombination in the Depletion Region7.4.3 Emitter Injection Efficiency with High-Level Injection in the Base7.4.4 Base Transport Factor7.4.5 Base Widening at High Collector Current Density7.5 Emitter Current Crowding7.5.1 Low-Level Injection in the Base7.5.2 High-Level Injection in the Base7.5.3 Emitter Geometry7.6 Output Characteristics7.7 On-State Characteristics7.7.1 Saturation Region7.7.2 Quasisaturation Region7.8 Switching Characteristics7.8.1 Turn-On Transition7.8.2 Turn-Off Transition7.9 Safe Operating Area7.9.1 Forward-Biased Second Breakdown7.9.2 Reverse-Biased Second Breakdown7.9.3 Boundary for Safe Operating Area7.10 Darlington Configuration7.11 SummaryProblemsReferencesChapter 8 Thyristors8.1 Power Thyristor Structure and Operation8.2 Blocking Characteristics8.2.1 Reverse-Blocking Capability8.2.2 Forward-Blocking Capability8.2.3 Cathode Shorting8.2.4 Cathode Shorting Geometry8.3 On-State Characteristics8.3.1 On-State Operation8.3.2 Gate-Triggering Current8.3.3 Holding Current8.4 Switching Characteristics8.4.1 Turn-On Time8.4.2 Gate Design8.4.3 Amplifying Gate Design8.4.4 [dV/dt]Capability8.4.5 Turn-Off Process8.5 Light-Activated Thyristors8.5.1 [dI/dt]Capability8.5.2 Gate Region Design8.5.3 Optically Generated Current Density8.5.4 Amplifying Gate Design8.6 Self-Protected Thyristors8.6.1 Forward Breakdown Protection8.6.2 [dV/dt]Turn-On Protection8.7 The Gate Turn-Off Thyristor Structure8.7.1 Basic Structure and Operation8.7.2 One-Dimensional Turn-Off Criterion8.7.3 One-Dimensional Storage Time Analysis8.7.4 Two-Dimensional Storage Time Model8.7.5 One-Dimensional Voltage Rise Time Model8.7.6 One-Dimensional Current Fall Time Model8.7.7 Switching Energy Loss8.7.8 Maximum Turn-Off Current8.7.9 Cell Design and Layout8.8 The Triac Structure8.8.1 Basic Structure and Operation8.8.2 Gate-Triggering Mode 18.8.3 Gate-Triggering Mode 28.8.4 [dV/dt]Capability8.9 SummaryProblemsReferencesChapter 9 Insulated Gate Bipolar Transistors9.1 Basic Device Structures9.2 Device Operation and Output Characteristics9.3 Device Equivalent Circuit9.4 Blocking Characteristics9.4.1 Symmetric Structure Forward-Blocking Capability9.4.2 Symmetric Structure Reverse-Blocking Capability9.4.3 Symmetric Structure Leakage Current9.4.4 Asymmetric Structure Forward-Blocking Capability9.4.5 Asymmetric Structure Reverse-Blocking Capability9.4.6 Asymmetric Structure Leakage Current9.5 On-State Characteristics9.5.1 On-State Model9.5.2 On-State Carrier Distribution:Symmetric Structure9.5.3 On-State Voltage Drop:Symmetric Structure9.5.4 On-State Carrier Distribution:Asymmetric Structure9.5.5 On-State Voltage Drop:Asymmetric Structure9.5.6 On-State Carrier Distribution:Transparent Emitter Structure9.5.7 On-State Voltage Drop:Transparent Emitter Structure9.6 Current Saturation Model9.6.1 Carrier Distribution:Symmetric Structure9.6.2 Output Characteristics:Symmetric Structure9.6.3 Output Resistance:Symmetric Structure9.6.4 Carrier Distribution:Asymmetric Structure9.6.5 Output Characteristics:Asymmetric Structure9.6.6 Output Resistance:Asymmetric Structure9.6.7 Carrier Distribution:Transparent Emitter Structure9.6.8 Output Characteristics:Transparent Emitter Structure9.6.9 Output Resistance:Transparent Emitter Structure9.7 Switching Characteristics9.7.1 Turn-On Physics:Forward Recovery9.7.2 Turn-Off Physics:No-Load Conditions9.7.3 Turn-Off Physics:Resistive Load9.7.4 Turn-Off Physics:Inductive Load9.7.5 Energy Loss per Cycle9.8 Power Loss Optimization9.8.1 Symmetric Structure9.8.2 Asymmetric Structure9.8.3 Transparent Emitter Structure9.8.4 Comparison of Tradeoff Curves9.9 Complementary(P-Channel)Structure9.9.1 On-State Characteristics9.9.2 Switching Characteristics9.9.3 Power Loss Optimization9.10 Latch-Up Suppression9.10.1 Deep P+ Diffusion9.10.2 Shallow P+ Layer9.10.3 Reduced Gate Oxide Thickness9.10.4 Bipolar Current Bypass9.10.5 Diverter Structure9.10.6 Cell Topology9.10.7 Latch-Up Proof Structure9.11 Safe Operating Area9.11.1 Forward-Biased Safe Operating Area9.11.2 Reverse-Biased Safe Operating Area9.11.3 Short-Circuit Safe Operating Area9.12 Trench-Gate Structure9.12.1 Blocking Mode9.12.2 On-State Carrier Distribution9.12.3 On-State Voltage Drop9.12.4 Switching Characteristics9.12.5 Safe Operating Area9.12.6 Modified Structures9.13 Blocking Voltage Scaling9.13.1 N-Base Design9.13.2 Power MOSFET Baseline9.13.3 On-State Characteristics9.13.4 Tradeoff Curve9.14 High Temperature Operation9.14.1 On-State Characteristics9.14.2 Latch-Up Characteristics9.15 Lifetime Control Techniques9.15.1 Electron Irradiation9.15.2 Neutron Irradiation9.15.3 Helium Irradiation9.16 Cell Optimization9.16.1 Planar-Gate Structure9.16.2 Trench-Gate Structure9.17 Reverse Conducting Structure9.18 SummaryProblemsReferencesChapter 10 Synopsis10.1 Typical H-Bridge Topology10.2 Power Loss Analysis10.3 Low DC Bus Voltage Applications10.4 Medium DC Bus Voltage Applications10.5 High DC Bus Voltage Applications10.6 SummaryProblemsReferencesIndex
图书封面
图书标签Tags
无
评论、评分、阅读与下载