神经系统发育

出版时间:2012-1  出版社:科学出版社  作者:(美)萨内斯 等编著  页数:341  
Tag标签:无  

内容概要

  《神经系统发育(原著第3版)(导读版?英文版)》由三位知名学者主笔,以现在和既往的重要实验与观察结果为例,对业已建立的和正在演变的神经发育原理进行广泛和基础的讨论。
  《神经系统发育(原著第3版)(导读版?英文版)》按照个体发生的顺序组织内容。从出现神经原基开始,随后每一章节按神经发育事件出现的顺序组织:神经系统的模式建成和生长,神经元命运决定,轴突导向和靶点寻找,神经元存活与死亡,突触形成与发育的可塑性。在结构部分基本完成后,最后一章讨论了行为的出现。
  新版的《神经系统发育》反映了通过新的分子遗传学和细胞生物学方法的应用取得的最新成果。丰富的彩色照片和原始绘图,辅以简明的叙述,使《神经系统发育(原著第3版)(导读版?英文版)》非常适合这一有趣领域的初涉者,包括高年级本科生、研究生和研究人员。

作者简介

丹•萨内斯,Dan H.Sanes教授,纽约大学神经科学中心。Thomas A.Reh教授,华盛顿大学生物结构系。William A.Harris教授,剑桥大学生理、发育及神经科学系。

书籍目录

第三版序
第二版序
第一版序
1.神经诱导
 神经元的发育与进化
 多细胞动物的早期胚胎学
 神经组织的衍化
 神经组织产生时与相邻组织的相互作用
 神经诱导物的分子属性
 神经诱导的保守性
 调控神经母细胞分离时外胚层细胞间的相互作用
 小结
 参考文献
2.极性与分节
 神经系统的区域性特征
 前-后轴与hox基因
 Hox基因在脊椎动物神经系统中的功能
 调控脊椎动物前一后轴模式建立的信号分子:头或尾
 脑发育的组织中心
 前脑发育,前脑结(prosomeres)与pax基因
 神经管的背一腹极性
 背侧神经管与神经脊
 大脑皮层模式的建立
 小结
 参考文献
3.发生与迁移
 什么决定由前体细胞产生的细胞数目?
 神经元与胶质细胞的产生
 大脑皮层的组织发生
 小脑皮层的组织发生
 神经元迁移的分子机制
 胚胎后期与成体的神经发生
 小结
 参考文献
4.命运决定与分化
 细胞谱系的转录调控组织次序:线虫神经元
 命运决定过程的时间与空间协同:果蝇中枢神经系统的神经母细胞
 不对称细胞分裂与细胞命运决定
 细胞间相互作用产生复杂性:果蝇视网膜
 细胞间相互作用和与微环境的相互作用决定细胞命运:脊椎动物神经脊细胞
 响应性与组织发生:哺乳动物大脑皮层
 组织发生过程中内外因素的整合:脊椎动物视网膜
 形成素的浓度梯度与细胞类型的空间组织:脊髓运动神经元
 小结
 参考文献
5.轴突生长与导向
 生长锥
 动态的细胞骨架
 树突的形成
 生长锥怎样持续生长?
 什么给生长锥提供导向信号?
 细胞黏附及示踪的通路
 排斥性导向信号
 趋化性,梯度与局部信号
 信号转导
 中线:穿过还是不穿过?
 吸引与排斥:脱敏及适应性
 视觉通路:从这里到那里
 小结
 参考文献
6.靶点区选择
 轴突解聚
 靶点区识别与进入
 在靶点区减速并形成分支
 边界巡防:阻止不当的靶向选择
 定位图绘制
 化学专一性和ephrins
 三维的、板层特异的终末定位
 细胞和突触的靶向
 ……
7.自然发生的神经元死亡
8.突触形成与功能
9.突触连接的精细化
10.行为发育
分子与基因名称索引
专业名词索引

章节摘录

版权页:插图:The human brain is made up of approximately 100 billionneurons and even more glial cells. The sources of all theseneurons and glia are the cells of the neural tube, describedin the previous chapters. Neurogenesis and gliogenesis, thegeneration ofneurons and glia during development, is collectively also called histogenesis. Once the neurons and glia aregenerated by the progenitors during development, they almostalways migrate over some distance from their point of ori-gin to their final position. This chapter describes the cellularand molecular principles by which the appropriate numbersof neurons and glia are generated from the neural precursors,and gives an overview of some of the complex cellular migra-tion processes involved in the construction of the brain. Thenumber of cells generated in the developing nervous systemis likely regulated at several levels. In some cases, the pro-duction of neurons or glia may be regulated by an intrinsiclimit in the number of progenitor cell divisions. The level ofproliferation and ultimately the number of cells generated canalso be controlled by extracellular signals, acting as mitogens,promoting progenitor cells to reenter the cell cycle or alterna-tively as mitotic inhibitors that induce progenitor cells to exitfrom the cell cycle. However, as we will see in Chapter 7, thenumber of neurons and glia in the mature nervous system is afunction not only of cell proliferation, but also of cell death.   As we saw in Chapter V the nervous system of C. elegans(as well as the rest of the animal) is derived from a highly ste-reotyped pattem of cell divisions. Therefore, in these animals,the lineages of the cells directly predict their numbers. Theregulation of these cell divisions appears to depend less on inter-actions with surrounding cells than is the case in vertebrates.The lineages of the C. elegans progenitor cells also predict theparticular types ofneurons that are generated from a particularprecursor, and it appears that the information to define a giventype of cell resides largely in factors derived directly from theprecursors. The same is true for the neuroblasts that producethe Drosophila central nervous system: the production ofneu-rons from the neuroblasts is highly stereotypic. The neuroblasts of the insect CNS delaminate from the ventral-lateral ecto-derm neurogenic region in successive waves (see Chapter 1).In Drosophila, about 25 neuroblasts delaminate in each seg-ment, and they are organized in four columns and six rows (Doeand Smouse, 1990). Once the neuroblast segregates from theectoderm, it undergoes several asymmetric divisions, givingrise to approximately five smaller ganglion mother cells. Eachganglion mother cell then divides to generate a pair ofneurons.These neurons make up the segmental ganglia of the ventralnerve cord and have stereotypic numbers and types of neurons. In the vertebrate, the situation gets considerably more com-plex. The neural tube of most vertebrates is initially a singlelayer thick. As neurogenesis proceeds, the progenitor cellsundergo a large number of cell divisions to produce a muchthicker tube. A section through the developing spinal cord isshown in Figure 3.1A, and an example of a progenitor cell isshown as a schematic in Figure 3.1B and in the actual neu-ral tube in Figure 3.1C, labeled with a fluorescent protein tovisualize the cell as it progresses through a cell division. Atthis stage of development, almost all the cells in the neuraltube resemble those shown in Figure 3.1B,C, with a simplebipolar shape. They extend one process to the central canalof the neural tube (named the ventricular surface because it iscontinuous with the ventricles of the brain) and they extendtheir other process to the outer surface of the neural tube.If one were just to look at the nuclei of the neural tube atthis stage, there would appear to be many cell layers, and at1irst, the early neurohistologists thought this was the case.However, in the early 1900s it was recognized that the cells of the neural tube move their nuclei from the inside of the neu-ral tube to the outside during each cell cycle. This movement can be directly observed using time lapse recording of cellslabeled with fluorescent proteins (Figure 3.1C). This constantnuclear movement is termed interkinetic nuclear migration.In this process, the nuclei move to the inner, ventricular sur-face moment just before mitosis, and divide into two daugh-ter cells; then the nuclei of these daughter cells move awayfrom this surface during S-phase; but wherever they are justbefore the next mitosis, they rapidly move back to the ven-tricular surface to complete division (Norden et al., 2009).

编辑推荐

《神经系统发育(原著第3版)(导读版•英文版)》特点:涵盖广泛的概念和实验设计策略、对重要发育事件的分子和遗传基础列出纲要、包含关键实验的全彩色图表和照片,以及设计方法。

图书封面

图书标签Tags

评论、评分、阅读与下载


    神经系统发育 PDF格式下载


用户评论 (总计1条)

 
 

  •   内容很好,不过应该是库存最后一本了,表面的塑封都快要掉了。以后重新再买本吧。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7